Numerical simulation of the group hypervelocity elements impact on a spacecraft
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2014), pp. 57-64 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The presence of a large number of manmade fragments of various sizes and shapes in the near-Earth space due to destruction of satellites and launch vehicles is a serious threat to the safe functioning of automatic and manned space vehicles. At present, protection of spacecrafts from man-made fragments is a highly relevant task for the successful development of modern astronautics. To solve it, it is necessary to research the process of interaction between hypervelocity projectiles and protected objects. Numerical simulation of the hypervelocity interaction between solids and protective systems allows one to reproduce the characteristic features of physical processes occurring in the collision, to consider and select the optimum scheme of protective shields. Involving present-day computers and numerical methods made it possible to solve problems of hypervelocity collision in a three-dimensional formulation with allowance for fragmentation of projectiles and shock protection elements of the spacecraft. Taking into account fragmentation and interaction of fragments between each other and the space vehicle body allows us to give a more complete picture of processes occurring upon the hypervelocity interaction between elements of space debris and the shell of a space object. In this paper, we consider the interaction of a group of elongated projectiles with the flat shape nose with a system of spaced plates.
Keywords: numerical simulation, hypervelocity impact, spacecraft, layered barriers.
Mots-clés : destruction
@article{VTGU_2014_3_a5,
     author = {A. V. Gerasimov and S. V. Pashkov},
     title = {Numerical simulation of the group hypervelocity elements impact on a~spacecraft},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {57--64},
     year = {2014},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2014_3_a5/}
}
TY  - JOUR
AU  - A. V. Gerasimov
AU  - S. V. Pashkov
TI  - Numerical simulation of the group hypervelocity elements impact on a spacecraft
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2014
SP  - 57
EP  - 64
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VTGU_2014_3_a5/
LA  - ru
ID  - VTGU_2014_3_a5
ER  - 
%0 Journal Article
%A A. V. Gerasimov
%A S. V. Pashkov
%T Numerical simulation of the group hypervelocity elements impact on a spacecraft
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2014
%P 57-64
%N 3
%U http://geodesic.mathdoc.fr/item/VTGU_2014_3_a5/
%G ru
%F VTGU_2014_3_a5
A. V. Gerasimov; S. V. Pashkov. Numerical simulation of the group hypervelocity elements impact on a spacecraft. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2014), pp. 57-64. http://geodesic.mathdoc.fr/item/VTGU_2014_3_a5/

[1] Zelepugin S. A., Konyaev A. A., Sidorov V. N. i dr., “Eksperimentalno-teoreticheskoe issledovanie soudareniya gruppy chastits s elementami zaschity kosmicheskikh apparatov”, Kosmicheskie issledovaniya, 46:6 (2008), 559–570

[2] K. P. Stanyukovich (red.), Fizika vzryva, Nauka, M., 1975, 704 pp.

[3] Uilkins M. L., “Raschet uprugoplasticheskikh techenii”, Vychislitelnye metody v gidrodinamike, Mir, M., 1967, 212–263

[4] Wilkins M. L., Computer simulation of dynamic phenomena, Springer, Berlin–Heidelberg–New-York, 1999, 246 pp. | MR | Zbl

[5] Steinberg D. J., Cochran S. G., Guinan M. W., “A constitutive model for metals applicable at high-strain rate”, J. Appl. Phys., 51:3 (1980), 1496–1504 | DOI

[6] Johnson G. R., Colby D. D., Vavrick D. J., “Tree-dimensional computer code for dynamic response of solids to intense impulsive loads”, Int. J. Numer. Methods Engng., 14:12 (1979), 1865–1871 | DOI | Zbl

[7] Johnson G. R., “Dynamic analysis of explosive-metal interaction in three dimensions”, Trans. ASME. J. of Appl. Mech., 48:1 (1981), 30–34 | DOI

[8] Kreinkhagen K. N., Vagner M. Kh., Pechotski Dzh. Dzh., Bork R. L., “Nakhozhdenie ballisticheskogo predela pri soudarenii s mnogosloinymi mishenyami”, Raketnaya tekhnika i kosmonavtika, 8:12 (1970), 42–47

[9] Gerasimov A. V., Barashkov V. N., Pashkov S. V., “Udar gruppy kompaktnykh elementov po tonkoi pregrade”, Izv. vuzov. Fizika, 52:7/2 (2009), 59–63

[10] Gerasimov A. V., Pashkov S. V., “Trekhmernoe modelirovanie razrusheniya pregrad gruppoi udarnikov”, Sb. dokl. VI Nauchn. konf. Volzhskogo region. Tsentra RARAN “Sovremennye metody proektirovaniya i otrabotki raketno-artilleriiskogo vooruzheniya” (Sarov, 2–4 iyunya 2009 g.), v. 1, RFYaTs-VNIIEF, Sarov, 2010, 392–399

[11] A. V. Gerasimov (red.), Teoreticheskie i eksperimentalnye issledovaniya vysokoskorostnogo vzaimodeistviya tel, Izd-vo Tom. un-ta, Tomsk, 2007, 572 pp.

[12] Quoc Bao Diep, John F. Moxnes, Gunnar Nevstad, “Fragmentation of projectiles and steel rings using 3D numerical simulations”, 21th International Symposium of Ballistics (19–23 April 2004, Adelaide, Australia)

[13] Gerasimov A. V., Pashkov S. V. Ch, “islennoe modelirovanie probitiya sloistykh pregrad”, Mekhanika kompozitsionnykh materialov i konstruktsii, 19:1 (2013), 49–61