Numerical modelling of the fluid flow above the bottom topography
    
    
  
  
  
      
      
      
        
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2014), pp. 51-60
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This paper presents an investigation of an inviscid incompressible fluid flow in a straight section of a channel with an irregular bottom as a closure of river stream model. Mathematically, the problem is written as a boundary-value problem for shallow water equations. 
Three test computational examples for a steady and unsteady flow above regular and irregular bottom have been carried out to study the model and possibilities of its applications. 
The computed solutions are obtained using the finite-difference method with the first order UPWIND scheme and two-step Lax–Wendroff scheme, which is second-order accurate in both space and time. To suppress dispersion characteristics which are the feature of second-order schemes, Kolgan’s surfacing algorithm is used. Numerical solutions obtained by the aforesaid schemes well agree with each other and become equivalent upon mesh clustering. 
In addition, a model of the contaminant dispersion in a stream over an irregular bottom is constructed. The computed distribution of the contaminant is in a good agreement with the physical flow pattern.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
mathematical model, shallow water equations, approximation error, solution stability, solution smoothing.
                    
                  
                
                
                @article{VTGU_2014_1_a4,
     author = {V. V. Churuksaeva and M. D. Mikhailov},
     title = {Numerical modelling of the fluid flow above the bottom topography},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {51--60},
     publisher = {mathdoc},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2014_1_a4/}
}
                      
                      
                    TY - JOUR AU - V. V. Churuksaeva AU - M. D. Mikhailov TI - Numerical modelling of the fluid flow above the bottom topography JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2014 SP - 51 EP - 60 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTGU_2014_1_a4/ LA - ru ID - VTGU_2014_1_a4 ER -
%0 Journal Article %A V. V. Churuksaeva %A M. D. Mikhailov %T Numerical modelling of the fluid flow above the bottom topography %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2014 %P 51-60 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTGU_2014_1_a4/ %G ru %F VTGU_2014_1_a4
V. V. Churuksaeva; M. D. Mikhailov. Numerical modelling of the fluid flow above the bottom topography. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2014), pp. 51-60. http://geodesic.mathdoc.fr/item/VTGU_2014_1_a4/
