Undecidable indirectly reflexive sentences
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2010), pp. 21-33
Cet article a éte moissonné depuis la source Math-Net.Ru
A generalization of the well-known diagonalization (reflexion) lemma for the case of indirect reflexion is proved for the theory of formal arithmetic. Indirectly reflexive sentences about provability and refutability in the $\omega$-consistent theory of formal arithmetic are studied. Existence of undecidable sentences among some sets of indirectly reflective sentences is proved. If provability and refutability are replaced by truth and falsehood, existence of undecidable sentences leads to paradoxes.
Keywords:
formal arithmetic, diagonalization, undecidable sentences
Mots-clés : indirect reflexion, paradoxes.
Mots-clés : indirect reflexion, paradoxes.
@article{VTGU_2010_1_a2,
author = {V. M. Zyuz'kov},
title = {Undecidable indirectly reflexive sentences},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {21--33},
year = {2010},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2010_1_a2/}
}
V. M. Zyuz'kov. Undecidable indirectly reflexive sentences. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2010), pp. 21-33. http://geodesic.mathdoc.fr/item/VTGU_2010_1_a2/
[1] Mendelson E., Vvedenie v matematicheskuyu logiku, Nauka, M., 1976, 320 pp.
[2] Bulos Dzh., Dzheffri R., Vychislimost i logika, Mir, M., 1994, 396 pp.
[3] Spravochnaya kniga po matematicheskoi logike, v 4-kh chastyakh, ch. IV: Teoriya dokazatelstv i konstruktivnaya matematika, ed. Dzh. Barvais, Nauka, M., 1983, 392 pp.
[4] Klini S.K., Vvedenie v metamatematiku, Knizhnyi dom «LIBROKOM», M., 2009, 528 pp.
[5] Smullyan R.M., Gödel's Incompleteness Theorem, Oxford University Press, Oxford, 1992 | MR | Zbl