On abelian groups, in which all subgroups are ideals
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2009), pp. 64-67 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The abelian groups, in which all subgroups are ideals in each of ring, given on group, are described. The conditions on types of direct summands of rank 1 of torsion free separable and vector groups, under which these groups are nil groups, are found.
Keywords: addition groups of the rings, nil groups.
@article{VTGU_2009_3_a5,
     author = {A. R. Chekhlov},
     title = {On abelian groups, in which all subgroups are ideals},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {64--67},
     year = {2009},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2009_3_a5/}
}
TY  - JOUR
AU  - A. R. Chekhlov
TI  - On abelian groups, in which all subgroups are ideals
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2009
SP  - 64
EP  - 67
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VTGU_2009_3_a5/
LA  - ru
ID  - VTGU_2009_3_a5
ER  - 
%0 Journal Article
%A A. R. Chekhlov
%T On abelian groups, in which all subgroups are ideals
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2009
%P 64-67
%N 3
%U http://geodesic.mathdoc.fr/item/VTGU_2009_3_a5/
%G ru
%F VTGU_2009_3_a5
A. R. Chekhlov. On abelian groups, in which all subgroups are ideals. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2009), pp. 64-67. http://geodesic.mathdoc.fr/item/VTGU_2009_3_a5/

[1] Fried E., “On the subgroups of an abelian group that are ideals in every ring”, Proc. Colloq. Abelian Groups, Budapest, 1964, 51–55 | MR | Zbl

[2] Fuks L., Beskonechnye abelevy gruppy, v. 1, Mir, M., 1974; т. 2, 1977

[3] Feigelstock S., Additive Groups of Rings, Pitman, Boston–London, 1983 | MR | Zbl