On abelian groups, in which all subgroups are ideals
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2009), pp. 64-67

Voir la notice de l'article provenant de la source Math-Net.Ru

The abelian groups, in which all subgroups are ideals in each of ring, given on group, are described. The conditions on types of direct summands of rank 1 of torsion free separable and vector groups, under which these groups are nil groups, are found.
Keywords: addition groups of the rings, nil groups.
@article{VTGU_2009_3_a5,
     author = {A. R. Chekhlov},
     title = {On abelian groups, in which all subgroups are ideals},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {64--67},
     publisher = {mathdoc},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2009_3_a5/}
}
TY  - JOUR
AU  - A. R. Chekhlov
TI  - On abelian groups, in which all subgroups are ideals
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2009
SP  - 64
EP  - 67
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTGU_2009_3_a5/
LA  - ru
ID  - VTGU_2009_3_a5
ER  - 
%0 Journal Article
%A A. R. Chekhlov
%T On abelian groups, in which all subgroups are ideals
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2009
%P 64-67
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTGU_2009_3_a5/
%G ru
%F VTGU_2009_3_a5
A. R. Chekhlov. On abelian groups, in which all subgroups are ideals. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2009), pp. 64-67. http://geodesic.mathdoc.fr/item/VTGU_2009_3_a5/