On some properties of motions of dynamical systems on compact manifolds
Vestnik rossijskih universitetov. Matematika, Tome 30 (2025) no. 149, pp. 28-40

Voir la notice de l'article provenant de la source Math-Net.Ru

The article considers the motions of dynamical system $g^t$ defined on a topological compact manifold $V.$ It is shown that the set $M_1$ of non-wandering points with respect to $V$ is the set of central motions $\mathfrak{M}$, and the union of all compact minimal sets is everywhere dense in the set $\mathfrak{M}.$ It is established that for any motion $f(t,p),$ there exists a compact minimal set $\Omega\subset V$ with the following property: for all values $t_0\in\mathbb{R}$ and every neighborhood $E_{\Omega}$ of the set $\Omega,$ the probability that the arc $\{f(t,p)\colon t\in[t_0,t_1]\}$ of the motion trajectory $f(t,p)$ belongs to the set $E_{\Omega},$ tends to 1 as $t_1\to+\infty;$ a similar statement is true for the arc $\{f(t,p)\colon t\in[-t_1,t_0]\}.$ All statements of this article can be transferred without any changes to the system $g^t$ defined in a Hausdorff sequentially compact topological space.
Keywords: topological manifold, dynamical systems, set of central motions, probabilistic properties of motions
@article{VTAMU_2025_30_149_a2,
     author = {S. M. Dzyuba},
     title = {On some properties of motions of dynamical systems on compact manifolds},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {28--40},
     publisher = {mathdoc},
     volume = {30},
     number = {149},
     year = {2025},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2025_30_149_a2/}
}
TY  - JOUR
AU  - S. M. Dzyuba
TI  - On some properties of motions of dynamical systems on compact manifolds
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2025
SP  - 28
EP  - 40
VL  - 30
IS  - 149
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2025_30_149_a2/
LA  - ru
ID  - VTAMU_2025_30_149_a2
ER  - 
%0 Journal Article
%A S. M. Dzyuba
%T On some properties of motions of dynamical systems on compact manifolds
%J Vestnik rossijskih universitetov. Matematika
%D 2025
%P 28-40
%V 30
%N 149
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTAMU_2025_30_149_a2/
%G ru
%F VTAMU_2025_30_149_a2
S. M. Dzyuba. On some properties of motions of dynamical systems on compact manifolds. Vestnik rossijskih universitetov. Matematika, Tome 30 (2025) no. 149, pp. 28-40. http://geodesic.mathdoc.fr/item/VTAMU_2025_30_149_a2/