About estimates of stability of contraction~mappings on~the~first Heisenberg group in the fixed point theorem
Vestnik rossijskih universitetov. Matematika, Tome 30 (2025) no. 149, pp. 15-27
Voir la notice de l'article provenant de la source Math-Net.Ru
On a symmetric $(1,q_2)$-quasimetric space $(\Bbb H^1_{\alpha},\mathrm{Box}_{\Bbb H^1_{\alpha}}),$ where $\mathrm{Box}_{\Bbb H^1_{\alpha}}$ is the
$\mathrm{Box}$-quasimetic of the first Heisenberg group $\Bbb H^1_{\alpha},$ we studied a constant $\mathrm{L}_{\Phi}$ in the estimate $\mathrm{Box}_{\Bbb H^1_{\alpha}}(u,\xi)\leq\frac{\mathrm{L}_{\Phi}\mathrm{Box}_{\Bbb H^1_{\alpha}}\big(u,\Phi(u)\big)}{1-\varepsilon}$ of stability of the $\varepsilon$-contracting mapping $\Phi$ with respect to the identity mapping; here $\xi$ is a fixed point of the mapping $\Phi$ and $u$ is an arbitrary point of $\Bbb H^1_{\alpha}.$ In the paper, we got that $\mathrm{L}_{\Phi}=1$ when the mapping $\Phi$ is the composition of the left translation and the homogeneous dilation subgroup.
Examples of the contracting mappings $\Phi$ on the first Heisenberg group such that $\mathrm{L}_{\Phi}$ is not less then $C\sqrt{q_2}$ were found; here positive constant $C$ does not depend on the choice of point $u\in\Bbb H^1_{\alpha}.$
Mots-clés :
$(q_1,q_2)$-quasimetric, $\mathrm{Box}$-quasimetric
Keywords: canonical Carnot group, contraction mapping, estimates of stability, fixed point
Keywords: canonical Carnot group, contraction mapping, estimates of stability, fixed point
@article{VTAMU_2025_30_149_a1,
author = {A. V. Greshnov},
title = {About estimates of stability of contraction~mappings on~the~first {Heisenberg} group in the fixed point theorem},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {15--27},
publisher = {mathdoc},
volume = {30},
number = {149},
year = {2025},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2025_30_149_a1/}
}
TY - JOUR AU - A. V. Greshnov TI - About estimates of stability of contraction~mappings on~the~first Heisenberg group in the fixed point theorem JO - Vestnik rossijskih universitetov. Matematika PY - 2025 SP - 15 EP - 27 VL - 30 IS - 149 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTAMU_2025_30_149_a1/ LA - ru ID - VTAMU_2025_30_149_a1 ER -
%0 Journal Article %A A. V. Greshnov %T About estimates of stability of contraction~mappings on~the~first Heisenberg group in the fixed point theorem %J Vestnik rossijskih universitetov. Matematika %D 2025 %P 15-27 %V 30 %N 149 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTAMU_2025_30_149_a1/ %G ru %F VTAMU_2025_30_149_a1
A. V. Greshnov. About estimates of stability of contraction~mappings on~the~first Heisenberg group in the fixed point theorem. Vestnik rossijskih universitetov. Matematika, Tome 30 (2025) no. 149, pp. 15-27. http://geodesic.mathdoc.fr/item/VTAMU_2025_30_149_a1/