About estimates of stability of contraction~mappings on~the~first Heisenberg group in the fixed point theorem
Vestnik rossijskih universitetov. Matematika, Tome 30 (2025) no. 149, pp. 15-27

Voir la notice de l'article provenant de la source Math-Net.Ru

On a symmetric $(1,q_2)$-quasimetric space $(\Bbb H^1_{\alpha},\mathrm{Box}_{\Bbb H^1_{\alpha}}),$ where $\mathrm{Box}_{\Bbb H^1_{\alpha}}$ is the $\mathrm{Box}$-quasimetic of the first Heisenberg group $\Bbb H^1_{\alpha},$ we studied a constant $\mathrm{L}_{\Phi}$ in the estimate $\mathrm{Box}_{\Bbb H^1_{\alpha}}(u,\xi)\leq\frac{\mathrm{L}_{\Phi}\mathrm{Box}_{\Bbb H^1_{\alpha}}\big(u,\Phi(u)\big)}{1-\varepsilon}$ of stability of the $\varepsilon$-contracting mapping $\Phi$ with respect to the identity mapping; here $\xi$ is a fixed point of the mapping $\Phi$ and $u$ is an arbitrary point of $\Bbb H^1_{\alpha}.$ In the paper, we got that $\mathrm{L}_{\Phi}=1$ when the mapping $\Phi$ is the composition of the left translation and the homogeneous dilation subgroup. Examples of the contracting mappings $\Phi$ on the first Heisenberg group such that $\mathrm{L}_{\Phi}$ is not less then $C\sqrt{q_2}$ were found; here positive constant $C$ does not depend on the choice of point $u\in\Bbb H^1_{\alpha}.$
Mots-clés : $(q_1,q_2)$-quasimetric, $\mathrm{Box}$-quasimetric
Keywords: canonical Carnot group, contraction mapping, estimates of stability, fixed point
@article{VTAMU_2025_30_149_a1,
     author = {A. V. Greshnov},
     title = {About estimates of stability of contraction~mappings on~the~first {Heisenberg} group in the fixed point theorem},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {15--27},
     publisher = {mathdoc},
     volume = {30},
     number = {149},
     year = {2025},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2025_30_149_a1/}
}
TY  - JOUR
AU  - A. V. Greshnov
TI  - About estimates of stability of contraction~mappings on~the~first Heisenberg group in the fixed point theorem
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2025
SP  - 15
EP  - 27
VL  - 30
IS  - 149
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2025_30_149_a1/
LA  - ru
ID  - VTAMU_2025_30_149_a1
ER  - 
%0 Journal Article
%A A. V. Greshnov
%T About estimates of stability of contraction~mappings on~the~first Heisenberg group in the fixed point theorem
%J Vestnik rossijskih universitetov. Matematika
%D 2025
%P 15-27
%V 30
%N 149
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTAMU_2025_30_149_a1/
%G ru
%F VTAMU_2025_30_149_a1
A. V. Greshnov. About estimates of stability of contraction~mappings on~the~first Heisenberg group in the fixed point theorem. Vestnik rossijskih universitetov. Matematika, Tome 30 (2025) no. 149, pp. 15-27. http://geodesic.mathdoc.fr/item/VTAMU_2025_30_149_a1/