Keywords: Monte Carlo method, extremum processes, integral transforms, Wiener–Hopf factorization
@article{VTAMU_2024_29_147_a0,
author = {A. S. Grechko and O. E. Kudryavtsev},
title = {Universal {Monte} {Carlo} method for {L\'evy} processes and their extrema},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {233--243},
year = {2024},
volume = {29},
number = {147},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2024_29_147_a0/}
}
TY - JOUR AU - A. S. Grechko AU - O. E. Kudryavtsev TI - Universal Monte Carlo method for Lévy processes and their extrema JO - Vestnik rossijskih universitetov. Matematika PY - 2024 SP - 233 EP - 243 VL - 29 IS - 147 UR - http://geodesic.mathdoc.fr/item/VTAMU_2024_29_147_a0/ LA - ru ID - VTAMU_2024_29_147_a0 ER -
A. S. Grechko; O. E. Kudryavtsev. Universal Monte Carlo method for Lévy processes and their extrema. Vestnik rossijskih universitetov. Matematika, Tome 29 (2024) no. 147, pp. 233-243. http://geodesic.mathdoc.fr/item/VTAMU_2024_29_147_a0/
[1] R. Cont, P. Tankov, Financial Modelling with Jump Processes, Financ. Math. Ser., ed. 2nd edition, Chapman Hall/CRC, BocaRaton, FL, 2008
[2] K. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge Stud. Adv. Math., 68, Cambridge Univ. Press, Cambridge, 1999
[3] O. E. Kudryavtsev, A. S. Grechko, I. E. Mamadov, “Monte Carlo method for pricing lookback options in Lévy models”, Theory Probab. Appl., 69:2 (2024), 243–264 | DOI | DOI
[4] A. Kuznetsov, A. E. Kyprianou, J. C. Pardo, K. van Schaik, “Wiener–Hopf Monte Carlo simulation technique for Lévy processes”, Journal of Applied Probability, 21:6 (2011), 2171–2190
[5] A. Ferreiro–Castilla, A. E. Kyprianou, R. Scheichl, G. Suryanarayana, “Multilevel Monte Carlo Simulation for Lévy processes based on the Wiener–Hopf factorisation”, Stochastic Processes and their Applications, 124:2 (2014), 985–1010 | DOI
[6] A. Ferreiro-Castilla, K. Van Schaik, “Applying the Wiener–Hopf Monte Carlo simulation technique for Lévy processes to path functionals”, Journal of Applied Probability, 52:1 (2015), 129–148 | DOI
[7] O. E. Kudryavtsev, “Approximate Wiener–Hopf factorization and the Monte Carlo methods for Lévy processes”, Theory Probab. Appl., 64:2 (2019), 186–208 | DOI | DOI
[8] G. Beliaysky, N. Danilova, G. Ougolnitsky, “Calculation of probability of the exit of a stochastic process from a band by Monte Carlo method: a Wiener–Hopf factorization”, Mathematics, 7:7 (2019), 581 | DOI
[9] G. Fusai, G. Guido, D. Marazzina, “Spitzer identity, Wiener–Hopf factorization and pricing of discretely monitored exotic options”, European Journal of Operational Research, 251 (2016), 124–134 | DOI
[10] O. Kudryavtsev, S. Levendorski\v{i}, “Fast and accurate pricing of barrier options under Lévy processes”, Finance Stoch., 13:4 (2009), 531–562 | DOI
[11] O. Kudryavtsev, N. Danilova, “Applications of artificial neural networks to simulating Lévy processes”, Journal of Mathematical Sciences, 271 (2023), 421–433 | DOI
[12] G. Doetsch, Guide to the Applications of the Laplace and $Z$-transforms, Van Nostrand-Reinhold, London–New York, 1971