Comparing the spectra of wandering exponents of a nonlinear two-dimensional system and a first approximation
Vestnik rossijskih universitetov. Matematika, Tome 29 (2024) no. 146, pp. 176-187 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we study various varieties of wandering exponents for solutions of linear homogeneous and nonlinear two-dimensional differential systems with coefficients continuous on the positive semiaxis. Moreover, all non-extendable solutions of the nonlinear system under consideration are defined on the entire positive time semi-axis. In 2010, I. N. Sergeev determined the wandering speed and wandering exponents (upper and lower, strong and weak) of a nonzero solution $x$ of a linear system. The wandering speed of the solution is the time-average velocity at which the central projection of the solution moves onto the unit sphere. Strong and weak exponents of wandering are the wandering speed of the solution, but minimized over all coordinate systems, and in the case of a weak exponent of wandering, minimization is performed at each moment of time. Therefore, strong and weak exponents of wandering take into account only the information about the solution that is not is suppressed by linear transformations: for example, they take into account the revolutions of the vector $x$ around zero, but do not take into account its local rotation around some other vector. In this work, a first approximation study of strong and weak wandering exponents was carried out. It is established that there is no dependence between the spectra (i. e., a set of different values on non-zero solutions) of strong and weak wandering exponents of a nonlinear system and the system of its first approximation. Namely, a two-dimensional nonlinear system is constructed such that the spectra of wandering exponents of its restriction to any open neighborhood of zero on the phase plane consist of all rational numbers in the interval $[0,1],$ and the spectra of the linear system of its first approximation consist of only one element.
Keywords: linear homogeneous differential system, nonlinear differential system, first approximation system, spectrum of a system exponent, variability of solution, exponent of oscillation, exponent of wandering, the wandering speed of a solution
@article{VTAMU_2024_29_146_a4,
     author = {N. A. Loboda},
     title = {Comparing the spectra of wandering exponents of a nonlinear two-dimensional system and a first approximation},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {176--187},
     year = {2024},
     volume = {29},
     number = {146},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2024_29_146_a4/}
}
TY  - JOUR
AU  - N. A. Loboda
TI  - Comparing the spectra of wandering exponents of a nonlinear two-dimensional system and a first approximation
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2024
SP  - 176
EP  - 187
VL  - 29
IS  - 146
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2024_29_146_a4/
LA  - ru
ID  - VTAMU_2024_29_146_a4
ER  - 
%0 Journal Article
%A N. A. Loboda
%T Comparing the spectra of wandering exponents of a nonlinear two-dimensional system and a first approximation
%J Vestnik rossijskih universitetov. Matematika
%D 2024
%P 176-187
%V 29
%N 146
%U http://geodesic.mathdoc.fr/item/VTAMU_2024_29_146_a4/
%G ru
%F VTAMU_2024_29_146_a4
N. A. Loboda. Comparing the spectra of wandering exponents of a nonlinear two-dimensional system and a first approximation. Vestnik rossijskih universitetov. Matematika, Tome 29 (2024) no. 146, pp. 176-187. http://geodesic.mathdoc.fr/item/VTAMU_2024_29_146_a4/

[1] I. N. Sergeev, “Opredelenie i svoistva kharakteristicheskikh chastot lineinogo uravneniya”, Trudy seminara im. I. G. Petrovskogo, 2006, no. 25, 249–294 | Zbl

[2] I. N. Sergeev, “Kharakteristiki koleblemosti i bluzhdaemosti reshenii lineinoi differentsialnoi sistemy”, Izvestiya RAN. Seriya matematicheskaya, 76:1 (2012), 149–172 | DOI | MR | Zbl

[3] I. N. Sergeev, “The complete set of relations between the oscillation, rotation and wandering indicators of solutions of differential systems”, Proceedings of the Institute of Mathematics and Computer Science of UdSU, 2015, no. 2(46), 171–183 (In Russian) | Zbl

[4] I. N. Sergeev, “Pokazateli koleblemosti, vraschaemosti i bluzhdaemosti reshenii differentsialnykh sistem”, Matematicheskie zametki, 99:5 (2016), 732–751 | DOI | MR | Zbl

[5] I. N. Sergeev, “Lyapunovskie kharakteristiki koleblemosti, vraschaemosti i bluzhdaemosti reshenii differentsialnykh sistem”, Trudy seminara im. I. G. Petrovskogo, 2016, no. 31, 177–219 ; I. N. Sergeev, “Lyapunov characteristics of oscillation, rotation, and wandering of solutions of differential systems”, Journal of Mathematical Sciences, 234:4 (2018), 497–522 | MR | Zbl

[6] I. N. Sergeev, “Koleblemost, vraschaemost i bluzhdaemost reshenii lineinykh differentsialnykh sistem”, Itogi nauki i tekhniki. Seriya «Sovremennaya matematika i ee prilozheniya. Tematicheskie obzory», 132 (2017), 117–121 ; I. N. Sergeev, “Oscillation, rotation, and wandering of solutions to linear differential systems”, Journal of Mathematical Sciences, 230:5 (2018), 770–774 | MR | Zbl

[7] D. S. Burlakov, S. V. Tsoi, “Sovpadenie polnoi i vektornoi chastot reshenii lineinoi avtonomnoi sistemy”, Trudy seminara im. I. G. Petrovskogo, 2014, no. 30, 75–93 ; D. S. Burlakov, S. V. Tsoii, “Coincidence of complete and vector frequencies of solutions of a linear autonomous system”, Journal of Mathematical Sciences, 210:2 (2015), 155–167 | MR | Zbl

[8] A. Kh. Stash, “Properties of exponents of oscillation of linear autonomous differential system solutions”, Bulletin of the Udmurt University. Mathematics. Mechanics. Computer Science, 29:4 (2019), 558–568 (In Russian) | MR | Zbl

[9] A. Kh. Stash, “Oriented rotatability exponents of solution of autonomous differential systems”, Vladikavkaz Mathematical Journal, 24:3 (2022), 120–132 (In Russian) | DOI | MR | Zbl

[10] A. Kh. Stash, “Suschestvovanie dvumernoi lineinoi sistemy s kontinualnymi spektrami polnykh i vektornykh chastot”, Differentsialnye uravneniya, 51:1 (2015), 143–144 | DOI | MR | Zbl

[11] A. Kh. Stash, “Spectra of oscillation and rotatability exponents of solutions of homogeneous differential systems”, Vladikavkaz Mathematical Journal, 25:2 (2023), 136–143 (In Russian) | DOI | MR

[12] A. Kh. Stash, “Ob upravlenii spektrami verkhnikh silnykh pokazatelei koleblemosti znakov, nulei i kornei differentsialnykh uravnenii tretego poryadka”, Differentsialnye uravneniya, 59:5 (2023), 588–595 | DOI | MR | Zbl

[13] A. Kh. Stash, “On the continuum spectra of the oscillation exponents of linear homogeneous differential systems”, Vestnik rossiyskikh universitetov. Matematika = Russian Universities Reports. Mathematics, 28:141 (2023), 60–67 (In Russian)

[14] A. Kh. Stash, “O suschestvennykh znacheniyakh pokazatelei koleblemosti reshenii lineinoi odnorodnoi dvumernoi differentsialnoi sistemy”, Trudy instituta matematiki i mekhaniki UrO RAN, 29:2 (2023), 157–171 | MR | Zbl

[15] I. N. Sergeev, “O pokazatelyakh koleblemosti, vraschaemosti i bluzhdaemosti differentsialnykh sistem, zadayuschikh povoroty ploskosti”, Vestnik MGU imeni M. V. Lomonosova. Seriya 1: Matematika. Mekhanika, 2019, no. 1, 21–26

[16] D. S. Burlakov, “Spektr skorostei bluzhdaniya neortogonalnogo proizvedeniya dvukh povorotov”, Vestnik MGU imeni M. V. Lomonosova. Seriya 1: Matematika. Mekhanika, 2015, no. 2, 49–53 | MR | Zbl

[17] V. V. Mitsenko, “O bluzhdaemosti reshenii dvumernykh dagonalnykh i treugolnykh differentsialnykh sistem”, Trudy seminara im. I. G. Petrovskogo, 2014, no. 30, 221–241 ; V. V. Mitsenko, “Wandering of solutions of two-dimensional diagonal and triangular systems of differential equations”, Journal of Mathematical Sciences, 210:3 (2015), 251–263 | DOI | MR | Zbl

[18] E. M. Shishlyannikov, “Primer differentsialnoi sistemy s kontinualnym spektrom pokazatelya bluzhdaemosti”, Vestnik MGU imeni M. V. Lomonosova. Seriya 1: Matematika. Mekhanika, 2017, no. 1, 64–68 | MR | Zbl

[19] E. M. Shishlyannikov, “Dvumernye differentsialnye sistemy s proizvolnymi konechnymi spektrami pokazatelya bluzhdaemosti”, Vestnik MGU imeni M. V. Lomonosova. Seriya 1: Matematika. Mekhanika, 2017, no. 5, 14–21 | MR | Zbl

[20] A. Kh. Stash, “Properties of sergeev oscilation characteristics of periodic second-order equation”, Vladikavkaz Mathematical Journal, 23:2 (2021), 78–86 (In Russian) | DOI | MR | Zbl

[21] A. Kh. Stash, “On the discontinuity of extreme exponents of oscillation on a set of linear homogeneous differential systems”, Differential Equations and Control Processes, 2023, no. 1, 78–109 (In Russian) | MR | Zbl

[22] I. N. Sergeev, “Opredelenie pokazatelei koleblemosti, vraschaemosti i bluzhdaemosti nelineinykh differentsialnykh sistem”, Vestnik MGU imeni M. V. Lomonosova. Seriya 1: Matematika. Mekhanika, 2021, no. 3, 41–46 | Zbl

[23] I. N. Sergeev, “Issledovanie pokazatelei koleblemosti, vraschaemosti i bluzhdaemosti po pervomu priblizheniyu”, Differentsialnye uravneniya, 59:6 (2023), 726–734 | DOI | MR | Zbl

[24] A. Kh. Stash, “Sravnenie spektrov pokazatelei koleblemosti nelineinoi sistemy i sistemy pervogo priblizheniya”, Differentsialnye uravneniya, 59:8 (2023), 1139–1142 | DOI | MR | Zbl