@article{VTAMU_2024_29_146_a3,
author = {E. B. Laneev and A. V. Klimishin},
title = {On~an~approximate~solution~to~an~ill-posed~mixed~boundary~value {problem~for~the~Laplace~equation~in~a~cylindrical~domain} with~homogeneous~conditions~of~the~second~kind on~the~lateral~surface~of~the~cylinder},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {164--175},
year = {2024},
volume = {29},
number = {146},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2024_29_146_a3/}
}
TY - JOUR AU - E. B. Laneev AU - A. V. Klimishin TI - On an approximate solution to an ill-posed mixed boundary value problem for the Laplace equation in a cylindrical domain with homogeneous conditions of the second kind on the lateral surface of the cylinder JO - Vestnik rossijskih universitetov. Matematika PY - 2024 SP - 164 EP - 175 VL - 29 IS - 146 UR - http://geodesic.mathdoc.fr/item/VTAMU_2024_29_146_a3/ LA - ru ID - VTAMU_2024_29_146_a3 ER -
%0 Journal Article %A E. B. Laneev %A A. V. Klimishin %T On an approximate solution to an ill-posed mixed boundary value problem for the Laplace equation in a cylindrical domain with homogeneous conditions of the second kind on the lateral surface of the cylinder %J Vestnik rossijskih universitetov. Matematika %D 2024 %P 164-175 %V 29 %N 146 %U http://geodesic.mathdoc.fr/item/VTAMU_2024_29_146_a3/ %G ru %F VTAMU_2024_29_146_a3
E. B. Laneev; A. V. Klimishin. On an approximate solution to an ill-posed mixed boundary value problem for the Laplace equation in a cylindrical domain with homogeneous conditions of the second kind on the lateral surface of the cylinder. Vestnik rossijskih universitetov. Matematika, Tome 29 (2024) no. 146, pp. 164-175. http://geodesic.mathdoc.fr/item/VTAMU_2024_29_146_a3/
[1] M. Joachimiak, “Choice of the regularization parameter for the Cauchy problem for the Laplace equation”, International Journal of Numerical Methods for Heat Fluid Flow, 30:10 (2020), 4475–4492
[2] S. B. Sorokin, “Ekonomichnyi pryamoi metod chislennogo resheniya zadachi Koshi dlya uravneniya Laplasa”, Sib. zhurn. vychisl. matem., 22:1 (2019), 99–117 | MR
[3] M. M. Lavrent'ev, On Some Ill-Posed Problems of Mathematical Physics, Academy of Sciences Publ., Novosibirsk, 1962 (In Russian) | MR
[4] G. M. Goluzin, V. I. Krylov, “Generalized Carleman formula and its application to the analytic continuation of functions”, Mat. Sb., 40:2 (1933), 144–149 (In Russian) | Zbl
[5] E. B. Laneev, “O postroenii funktsii Karlemana na osnove metoda regulyarizatsii Tikhonova v nekorrektno postavlennoi zadache dlya uravneniya Laplasa”, Differentsialnye uravneniya, 54:4 (2018), 483–491 | DOI | MR | Zbl
[6] A. N. Tikhonov, V. {Ya}. Arsenin, Methods for Solving Ill-Posed Problems, Nauka Publ., Moscow, 1979 (In Russian)
[7] E. M. Landis, “Nekotorye voprosy kachestvennoi teorii ellipticheskikh uravnenii vtorogo poryadka (sluchai mnogikh nezavisimykh peremennykh)”, Uspekhi matematicheskikh nauk, 18:1(109) (1963), 3–62 | MR | Zbl
[8] V. B. Glasko, Inverse Problems of Mathematical Physics, MSU Publ., Moscow, 1984 (In Russian) | MR
[9] Sh. Yarmukhamedov, “Funktsiya Karlemana i zadacha Koshi dlya uravneniya Laplasa”, Sibirskii matematicheskii zhurnal, 45:3 (2004), 702–719 | MR | Zbl
[10] E. N. Sattorov, Z. E. Ermamatova, “Carleman’s formula of a solutions of the poisson equation in bounded domain”, Ural Mathematical Journal, 7:2 (2021), 110–120 | MR | Zbl
[11] O. Baaj, “On the application of the Fourier method to solve the problem of correction of thermographic images”, Discrete and Continuous Models and Applied Computational Science, 30:3 (2022), 205–216 | MR
[12] E. B. Laneev, O. Baaj, “On a modification of the Hamming method for summing discrete Fourier series and its application to solve the problem of correction of thermographic images”, Discrete and Continuous Models and Applied Computational Science, 30:4 (2022), 342–356
[13] E. B. Laneev, N. Yu. Chernikova, O. Baaj, “Application of the minimum principle of a Tikhonov smoothing functional in the problem of processing thermographic data”, Advances in Systems Science and Applications, 2021, no. 1, 139–149
[14] E. B. Laneev, E. Yu. Ponomarenko, “On a linear inverse potential problem with approximate data on the potential field on an approximately given surface”, Eurasian Mathematical Journal, 14:1 (2023), 57–70 | MR