@article{VTAMU_2023_28_144_a3,
author = {I. D. Serova},
title = {Study of the boundary value problem for a differential inclusion},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {395--405},
year = {2023},
volume = {28},
number = {144},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2023_28_144_a3/}
}
I. D. Serova. Study of the boundary value problem for a differential inclusion. Vestnik rossijskih universitetov. Matematika, Tome 28 (2023) no. 144, pp. 395-405. http://geodesic.mathdoc.fr/item/VTAMU_2023_28_144_a3/
[1] V. I. Arnold, Additional Chapters of the Theory of Ordinary Differential Equations, Nauka Publ., Moscow, 1978 (In Russian)
[2] A. A. Davydov, “Singularities of Limiting Directions of Generic Higher Order Implicit ODEs”, Proc. Steklov Inst. Math., 236 (2002), 124–131 | MR | Zbl
[3] A. A. Davydov, “Normal form of a differential equation, not solvable for the derivative, in a neighborhood of a singular point”, Funct. Anal. Appl., 19:2 (1985), 81–89 | DOI | MR | Zbl
[4] L. Dara, “Singularites generiques des equations differentielles multiformes”, Bol. Soc. Bras. Mat., 6:2 (1975), 95–128 | DOI | MR | Zbl
[5] A. O. Remizov, “Many-dimensional poincaré construction and singularities of lifted fields for implicit differential equations”, Journal of Mathematical Sciences, 151:6 (2008), 3561–3602 | DOI | MR | Zbl
[6] A. O. Remizov, “Implicit differential equations and vector fields with non-isolated singular points”, Sb. Math., 193:11 (2002), 1671–1690 | DOI | DOI | MR | MR | Zbl
[7] W. Walter, “Differential and integral inequalities”, Journal of Fluid Mechanics, 48:2 (1970), 710–713 | MR
[8] E. Beckenbach, R. Bellman, Inequalities, Mir Publ., Moscow, 1965 (In Russian)
[9] Ya. D. Mammadov, S. Ashirov, S. Atdaev, Inequality theorems, Ylym Publ., Ashkhabad, 1980 (In Russian)
[10] S. A. Chaplygin, “Foundations of a New Method of Approximate Integration of Differential Equations”, Collected works, v. I, Gostekhizdat, M., 1948, 348–368 (In Russian)
[11] E. S. Zhukovskiy, “On ordered-covering mappings and implicit differential inequalities”, Differ. Equ., 52:12 (2016), 1539–1556 | DOI | DOI | MR | MR | Zbl
[12] E. S. Zhukovskiy, E. A. Pluzhnikova, “On controlling objects whose motion is defined by implicit nonlinear differential equations”, Autom. Remote Control, 76:1 (2015), 24–43 | DOI | MR | Zbl
[13] S. Benarab, “Two-sided estimates for solutions of boundary value problems for implicit differential equations”, Vestnik rossiyskikh universitetov. Matematika = Russian Universities Reports. Mathematics, 26:134 (2021), 216–220 (In Russian) | Zbl
[14] A. V. Arutyunov, E. S. Zhukovskiy, S. E. Zhukovskiy, “On coincidence points of mappings in partially ordered spaces”, Doklady Mathematics, 88:3 (2013), 710–713 | DOI | DOI | MR | Zbl
[15] A. V. Arutyunov, E. S. Zhukovskiy, S. E. Zhukovskiy, “Coincidence points of set-valued mappings in partially ordered spaces”, Doklady Mathematics, 88:3 (2013), 727–729 | DOI | DOI | MR | Zbl
[16] A. V. Arutyunov, E. S. Zhukovskiy, S. E. Zhukovskiy, “On the cardinality of the coincidence set for mappings of metric, normed and partially ordered spaces”, Sb. Math., 209:8 (2018), 1107–1130 | DOI | DOI | MR | Zbl
[17] A. V. Arutyunov, E. S. Zhukovskiy, S. E. Zhukovskiy, “Coincidence points principle for mappings in partially ordered spaces”, Topology and its Applications, 179:1 (2015), 13–33 | DOI | MR | Zbl
[18] A. V. Arutyunov, E. S. Zhukovskiy, S. E. Zhukovskiy, “Coincidence points principle for set-valued mappings in partially ordered spaces”, Topology and its Applications, 179 (2016), 330–343 | DOI | MR
[19] I. D. Serova, A. A. Repin, “About Existence and Estimates of Solutions of the Implicit Differential Equation With Autoadjustable Deviation Argument”, Vestnik Tambovskogo universiteta. Seriya: estestvennye i tekhnicheskie nauki = Tambov University Reports. Series: Natural and Technical Sciences, 23:123 (2018), 566–574 (In Russian)
[20] I. D. Serova, “On estimates of the solution of an implicit functional differential equation”, Applied Mathematics and Control Sciences, 2017, no. 2, 85–93 (In Russian)
[21] A. A. Andronov, A. A. Vitt, S. E. Hajkin, Oscillation Theory, 2nd. ed., Gos. Izd-vo Fiz.-Mat. Literatury Publ., M., 1959 (In Russian)
[22] A. D. Piliya, V. I. Fedorov, “Singularities of the field of an electromagnetic wave in a cold anisotropic plasma with two-dimensional inhomogeneity”, JETP, 33:1 (1971), 210–215
[23] E. O. Burlakov,E. S. Zhukovskiy, E. A. Panasenko, I. D. Serova, “On order covering set-valued mappings and their applications to the investigation of implicit differential inclusions and dynamic models of economic processes”, Advances in Systems Science and Applications, 22:1 (2022), 176–191 | MR