Mots-clés : existence of a solution
@article{VTAMU_2023_28_144_a2,
author = {A. S. Patrina},
title = {On a boundary value problem for a system of differential equations modeling the electrical activity of the brain},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {383--394},
year = {2023},
volume = {28},
number = {144},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2023_28_144_a2/}
}
TY - JOUR AU - A. S. Patrina TI - On a boundary value problem for a system of differential equations modeling the electrical activity of the brain JO - Vestnik rossijskih universitetov. Matematika PY - 2023 SP - 383 EP - 394 VL - 28 IS - 144 UR - http://geodesic.mathdoc.fr/item/VTAMU_2023_28_144_a2/ LA - ru ID - VTAMU_2023_28_144_a2 ER -
%0 Journal Article %A A. S. Patrina %T On a boundary value problem for a system of differential equations modeling the electrical activity of the brain %J Vestnik rossijskih universitetov. Matematika %D 2023 %P 383-394 %V 28 %N 144 %U http://geodesic.mathdoc.fr/item/VTAMU_2023_28_144_a2/ %G ru %F VTAMU_2023_28_144_a2
A. S. Patrina. On a boundary value problem for a system of differential equations modeling the electrical activity of the brain. Vestnik rossijskih universitetov. Matematika, Tome 28 (2023) no. 144, pp. 383-394. http://geodesic.mathdoc.fr/item/VTAMU_2023_28_144_a2/
[1] J. J. Hopfield, “Neural networks and physical systems with emergent collective computational properties”, Proc. Nat. Acad. Sci., 79:8 (1982), 2554–2558 | DOI | MR | Zbl
[2] V. L. Bykov, Cytology and General Histology, Sothis Publ., St. Petersburg, 2018, 237 pp. (In Russian)
[3] P. Van den Driesche, X. Zou, “Global attractivity in delayed Hopfield neural network models”, SIAM J. Appl. Math., 58 (1998), 1878–1890 | DOI | MR | Zbl
[4] A. S. Lanina, E. A. Pluzhnikova, “On the properties of solutions to differential systems modeling the electrical activity of the brain”, Vestnik rossiyskikh universitetov. Matematika = Russian Universities Reports. Mathematics, 27:139 (2022), 270–283 (In Russian) | Zbl
[5] E. S. Zhukovskii, “Neravenstva Volterra v funktsionalnykh prostranstvakh”, Matem. sb., 195:9 (2004), 3–18 | DOI | MR | Zbl
[6] E. S. Zhukovskii, “Ob uporyadochenno nakryvayuschikh otobrazheniyakh i neyavnykh differentsialnykh neravenstvakh”, Differentsialnye uravneniya, 52:12 (2016), 1610–1627 | DOI | MR | Zbl
[7] E. O. Burlakov, E. S. Zhukovskiy, “On absrtact Volterra equations in partially ordered spaces and their applications”, CONCORD-90: Mathematical Analysis With Applications, International conference in honor of the 90th Birthday of Constantin Corduneanu (2018, Ekaterinburg, Russia), v. 318, Springer Proceedings in Mathematics Statistics, eds. S. Pinelas, A. Kim, V. Vlasov, 2020, 3–11 | DOI | MR | Zbl
[8] S. Benarab, Z. T. Zhukovskaya, E. S. Zhukovskii, S. E. Zhukovskii, “O funktsionalnykh i differentsialnykh neravenstvakh i ikh prilozheniyakh k zadacham upravleniya”, Differentsialnye uravneniya, 56:11 (2020), 1471–1482 | DOI | MR
[9] L. V. Kantorovich, G. P. Akilov, Functional Analysis, Nauka Publ., Mscow, 1984 (In Russian) | MR
[10] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, 5-e izd., Fizmatlit, M., 2019 ; A. N. Kolmogorov, S. V. Fomin, Elements of the Theory of Functions and Functional Analysis, v. I, II, Dover Publications, Mineola, New York, 1957, 1961 | MR | MR
[11] A. V. Arutyunov, E. S. Zhukovskiy, S. E. Zhukovskiy, “Coincidence points principle for mappings in partially ordered spaces”, Topology and its Applications, 179:1 (2015), 13–33 | DOI | MR | Zbl
[12] L. A. Lyusternik, V. I. Sobolev, A Short Course in Functional Analysis, Higher School Publ., Moscow, 1982, 271 pp. (In Russian) | MR
[13] N. V. Azbelev, V. P. Maksimov, L. F. Rakhmatullina, Introduction to the Theory of Functional Differential Equations, Nauka Publ., Mscow, 1991 (In Russian) | MR