Estimation of total income with discounting for probabilistic models of population dynamics
    
    
  
  
  
      
      
      
        
Vestnik rossijskih universitetov. Matematika, Tome 28 (2023) no. 143, pp. 217-226
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Models of homogeneous and structured populations given by differential equations depending on random parameters are considered. A population is called homogeneous if it consists of only one animal or plant species, and structured if it contains $n\geqslant 2$ different species or age classes. We assume that in the absence of exploitation, the dynamics of the population is given by the system of differential equations
\begin{equation*}
\dot{x}=g(x), \quad x\in\mathbb R^{n}_{+}\doteq\left\{x\in \mathbb R^{n}: x^1\geqslant 0 ,\ldots,x^n\geqslant 0\right\}.
\end{equation*}
At times $\tau_{k}=kd,$ where $d>0,$ $k=1,2,\ldots,$ random shares of the resource $\omega_{k}=(\omega_{k }^1,\ldots,\omega_{k}^n)\!\in\Omega\subseteq [0,1]^n$ are extracted from this population.
If $\omega_{k}^i$ is greater than some value $u_{k}^i\in[0,1),$ then the collection of the resource of the $i$-th type stops at the moment $\tau_{k}$ and the share of the extracted resource turns out to be equal to $\ell_{k}^i\doteq\min(\omega_{k}^i,u_{k}^i).$  Let $C^{i}\geqslant 0$ be the cost of the resource of the $i$-th type, $i=1,\ldots,n,$ $X_k^{i}=x^{i}(kd-0)$ the quantity of the $i$-th type of resource at the time $\tau_k$ before collection; then the amount of income at the moment  equals $Z_k\doteq\displaystyle\sum_{i=1}^n{C^{i}X_k^{i}\ell_{k}^i}.$
		The properties of the characteristic of the total income, which is defined as the sum of the series of income values at the time $\tau_k,$ taking into account the discounting factor $\alpha>0$ are investigated:
		\begin{equation*}
			H_{\alpha}\bigl(\overline{\ell},x_{0}\bigr)=\sum_{k=1}^\infty{Z_k e^{-\alpha{k}}}=\sum_{k=1}^{\infty}e^{-\alpha{k}}
			\sum_{i=1}^{n}C^{i}X_k^{i}\ell_{k}^i,
		\end{equation*}
	where $\overline{\ell}\doteq(\ell_{1},\ldots,\ell_{k},\ldots),$ $x_0$ is the initial population size. The value of $\alpha$ indicates that the value of the income received later decreases.
		Estimates of the total income, taking into account discounting, made with probability one are obtained.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
structured population, total income estimate.
                    
                  
                
                
                @article{VTAMU_2023_28_143_a0,
     author = {A. A. Bazulkina},
     title = {Estimation of total income with discounting for probabilistic models of population dynamics},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {217--226},
     publisher = {mathdoc},
     volume = {28},
     number = {143},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2023_28_143_a0/}
}
                      
                      
                    TY - JOUR AU - A. A. Bazulkina TI - Estimation of total income with discounting for probabilistic models of population dynamics JO - Vestnik rossijskih universitetov. Matematika PY - 2023 SP - 217 EP - 226 VL - 28 IS - 143 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTAMU_2023_28_143_a0/ LA - ru ID - VTAMU_2023_28_143_a0 ER -
%0 Journal Article %A A. A. Bazulkina %T Estimation of total income with discounting for probabilistic models of population dynamics %J Vestnik rossijskih universitetov. Matematika %D 2023 %P 217-226 %V 28 %N 143 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTAMU_2023_28_143_a0/ %G ru %F VTAMU_2023_28_143_a0
A. A. Bazulkina. Estimation of total income with discounting for probabilistic models of population dynamics. Vestnik rossijskih universitetov. Matematika, Tome 28 (2023) no. 143, pp. 217-226. http://geodesic.mathdoc.fr/item/VTAMU_2023_28_143_a0/
