The best approximation and the values of the widths of some classes of analytical functions in the weighted Bergman space $\mathscr{B}_{2,\gamma}$
Vestnik rossijskih universitetov. Matematika, Tome 28 (2023) no. 142, pp. 182-192
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper, exact inequalities are found for the best approximation of an arbitrary analytic function $f$ in the unit circle by algebraic complex polynomials in terms of the modulus of continuity of the $m$th order of the $r$th order derivative $f^{(r)}$ in the weighted Bergman space $ \mathscr{B}_{2,\gamma}.$ Also using the modulus of continuity of the $m$-th order of the derivative $f^{(r)}$, we introduce a class of functions $W_{m}^{(r)}(h,\Phi)$ analytic in the unit circle and defined by a given majorant $\Phi,$ $h\in (0,\pi/n],$ $n>r,$ monotonically increasing on the positive semiaxis. Under certain conditions on the majorant $\Phi,$ for the introduced class of functions, the exact values of some known $n$-widths are calculated. We use methods for solving extremal problems in normed spaces of functions analytic in a circle, as well as the method for estimating from below the $n$-widths of functional classes in various Banach spaces developed by V. M. Tikhomirov. The results presented in this paper are a continuation and generalization of some earlier results on the best approximations and values of widths in the weighted Bergman space $\mathscr{B}_{2,\gamma}.$
Keywords:
analytic function, best approximation, modulus of higher-order continuity, weighted Bergman space, widths.
@article{VTAMU_2023_28_142_a6,
author = {M. R. Langarshoev},
title = {The best approximation and the values of the widths of some classes of analytical functions in the weighted {Bergman} space $\mathscr{B}_{2,\gamma}$},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {182--192},
publisher = {mathdoc},
volume = {28},
number = {142},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2023_28_142_a6/}
}
TY - JOUR
AU - M. R. Langarshoev
TI - The best approximation and the values of the widths of some classes of analytical functions in the weighted Bergman space $\mathscr{B}_{2,\gamma}$
JO - Vestnik rossijskih universitetov. Matematika
PY - 2023
SP - 182
EP - 192
VL - 28
IS - 142
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/VTAMU_2023_28_142_a6/
LA - ru
ID - VTAMU_2023_28_142_a6
ER -
%0 Journal Article
%A M. R. Langarshoev
%T The best approximation and the values of the widths of some classes of analytical functions in the weighted Bergman space $\mathscr{B}_{2,\gamma}$
%J Vestnik rossijskih universitetov. Matematika
%D 2023
%P 182-192
%V 28
%N 142
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTAMU_2023_28_142_a6/
%G ru
%F VTAMU_2023_28_142_a6
M. R. Langarshoev. The best approximation and the values of the widths of some classes of analytical functions in the weighted Bergman space $\mathscr{B}_{2,\gamma}$. Vestnik rossijskih universitetov. Matematika, Tome 28 (2023) no. 142, pp. 182-192. http://geodesic.mathdoc.fr/item/VTAMU_2023_28_142_a6/