Hermite functions and inner product in Sobolev space
    
    
  
  
  
      
      
      
        
Vestnik rossijskih universitetov. Matematika, Tome 28 (2023) no. 142, pp. 155-168
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let us consider the orthogonal Hermite system $\left\{ \varphi_{2n}(x)\right\} _{n\geq 0}$ of even index defined on $\left( -\infty,\infty \right),$ where \begin{equation*}
\varphi _{2n}(x)=\frac{e^{-\frac{x^{2}}{2}}}{\sqrt{\left( 2n\right) !}\pi ^{\frac{1}{4}}2^{n}}H_{2n}(x),
\end{equation*}
by $H_{2n}(x)$ we denote a Hermite polynomial of degree $2n.$ In this paper, we consider a generalized system $\left\{ \psi_{r,2n}(x)\right\} $ with $r>0,$ $n\geq 0$ which is orthogonal with respect to the Sobolev type inner product on $\left(-\infty ,\infty \right),$ i.e.
\begin{equation*}
\langle f,g \rangle =\lim_{t\rightarrow -\infty }\sum_{k=0}^{r-1}f^{\left(k\right) }(t)g^{\left( k\right) }(t)+\int_{-\infty }^{\infty }f^{\left(r\right) }(x)g^{\left( r\right) }(x)\rho (x)dx
\end{equation*}
with $\rho (x)=e^{-x^{2}},$  and generated by $\left\{\varphi_{2n}(x)\right\}_{n\geq 0}.$
The main goal of this work is to study some properties related to the system $\left\{ \psi_{r,2n}(x)\right\}_{n\geq 0},$
\begin{gather*}
\psi _{r,n}(x)=\frac{(x-a)^{n}}{n!},\quad n=0,1,2,\ldots,r-1,
\\[2pt]
\psi _{r,r+n}(x)=\frac{1}{(r-1)!}\int_{a}^{b}(x-t)^{r-1}\varphi _{n}(t)dt,
\quad n=0,1,2,\ldots\, .
\end{gather*}
 We study the conditions on a function $f(x),$ given in a generalized Hermite orthogonal system, for it to be expandable into a generalized mixed Fourier series as well as the convergence of this Fourier series.
The second result of the paper is the proof of a recurrent formula for the system $\left\{ \psi _{r,2n}(x)\right\} _{n\geq 0}.$ We also discuss the asymptotic properties of these functions, and this concludes our contribution.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
inner product, Sobolev space, Hermite polynomials.
                    
                    
                    
                  
                
                
                @article{VTAMU_2023_28_142_a4,
     author = {M. A. Boudref},
     title = {Hermite functions and inner product in {Sobolev} space},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {155--168},
     publisher = {mathdoc},
     volume = {28},
     number = {142},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2023_28_142_a4/}
}
                      
                      
                    M. A. Boudref. Hermite functions and inner product in Sobolev space. Vestnik rossijskih universitetov. Matematika, Tome 28 (2023) no. 142, pp. 155-168. http://geodesic.mathdoc.fr/item/VTAMU_2023_28_142_a4/
