Ordinary differential equations and differential equations with delay: general properties and features
    
    
  
  
  
      
      
      
        
Vestnik rossijskih universitetov. Matematika, Tome 28 (2023) no. 142, pp. 137-154
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider the differential equation with delay
$$\dot{x}(t)=f\big(t,x(h(t))\big), \ \ t\geq 0, \ \ x(s)=\varphi(s), \ \ s0,$$
  with respect to an unknown function $x$ absolutely continuous on every finite interval. It is assumed that the function $f:\mathbb{R}_+ \times \mathbb{R} \to \mathbb{R}$ is superpositionally measurable, the functions $\varphi:(-\infty,0)\to \mathbb{R},$ $h:\mathbb{R}_+ \to \mathbb{R}$ are measurable, and $h(t)\leq t$ for a. e. $t\geq 0.$ If the more burdensome inequality $h(t)\leq t-\tau $ holds for some $\tau > 0,$ then the Cauchy problem for this equation is uniquely solvable and any solution can be extended to the semiaxis $\mathbb{R}_+ .$ At the same time, the Cauchy problem for the corresponding differential equation
  $$\dot{x}(t)=f\big(t,x(t)\big), \ \ t\geq 0, $$
    may have infinitely many solutions, and the maximum interval of existence of solutions may be finite. In the article, we investigate which of the listed properties a delay equation possesses (i.e. has a unique solution or infinitely many solutions, has finite or infinite  maximum interval of existence of solutions), if the function $h$ has only one «critical» point $t_0 \geq 0,$ a point for which the measure of the set $\big\{t\in (t_0-\varepsilon, t_0+\varepsilon)\cap \mathbb{R}_+ :\, h(t)>t-\varepsilon \big\}$ is positive for any $\varepsilon >0.$ It turns out that for such a delay function, the properties of solutions are close to those of solutions of an ordinary differential equation. In addition, we consider the problem of the dependence of solutions of a delay equation on the function $h.$
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
differential equation with delay, Cauchy problem, dependence of a solution on a delay function.
                    
                  
                
                
                @article{VTAMU_2023_28_142_a3,
     author = {N. S. Borzov and T. V. Zhukovskaya and I. D. Serova},
     title = {Ordinary differential equations and differential equations with delay: general properties and features},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {137--154},
     publisher = {mathdoc},
     volume = {28},
     number = {142},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2023_28_142_a3/}
}
                      
                      
                    TY - JOUR AU - N. S. Borzov AU - T. V. Zhukovskaya AU - I. D. Serova TI - Ordinary differential equations and differential equations with delay: general properties and features JO - Vestnik rossijskih universitetov. Matematika PY - 2023 SP - 137 EP - 154 VL - 28 IS - 142 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTAMU_2023_28_142_a3/ LA - ru ID - VTAMU_2023_28_142_a3 ER -
%0 Journal Article %A N. S. Borzov %A T. V. Zhukovskaya %A I. D. Serova %T Ordinary differential equations and differential equations with delay: general properties and features %J Vestnik rossijskih universitetov. Matematika %D 2023 %P 137-154 %V 28 %N 142 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTAMU_2023_28_142_a3/ %G ru %F VTAMU_2023_28_142_a3
N. S. Borzov; T. V. Zhukovskaya; I. D. Serova. Ordinary differential equations and differential equations with delay: general properties and features. Vestnik rossijskih universitetov. Matematika, Tome 28 (2023) no. 142, pp. 137-154. http://geodesic.mathdoc.fr/item/VTAMU_2023_28_142_a3/
