Ordinary differential equations and differential equations with delay: general properties and features
Vestnik rossijskih universitetov. Matematika, Tome 28 (2023) no. 142, pp. 137-154

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the differential equation with delay $$\dot{x}(t)=f\big(t,x(h(t))\big), \ \ t\geq 0, \ \ x(s)=\varphi(s), \ \ s0,$$ with respect to an unknown function $x$ absolutely continuous on every finite interval. It is assumed that the function $f:\mathbb{R}_+ \times \mathbb{R} \to \mathbb{R}$ is superpositionally measurable, the functions $\varphi:(-\infty,0)\to \mathbb{R},$ $h:\mathbb{R}_+ \to \mathbb{R}$ are measurable, and $h(t)\leq t$ for a. e. $t\geq 0.$ If the more burdensome inequality $h(t)\leq t-\tau $ holds for some $\tau > 0,$ then the Cauchy problem for this equation is uniquely solvable and any solution can be extended to the semiaxis $\mathbb{R}_+ .$ At the same time, the Cauchy problem for the corresponding differential equation $$\dot{x}(t)=f\big(t,x(t)\big), \ \ t\geq 0, $$ may have infinitely many solutions, and the maximum interval of existence of solutions may be finite. In the article, we investigate which of the listed properties a delay equation possesses (i.e. has a unique solution or infinitely many solutions, has finite or infinite maximum interval of existence of solutions), if the function $h$ has only one «critical» point $t_0 \geq 0,$ a point for which the measure of the set $\big\{t\in (t_0-\varepsilon, t_0+\varepsilon)\cap \mathbb{R}_+ :\, h(t)>t-\varepsilon \big\}$ is positive for any $\varepsilon >0.$ It turns out that for such a delay function, the properties of solutions are close to those of solutions of an ordinary differential equation. In addition, we consider the problem of the dependence of solutions of a delay equation on the function $h.$
Keywords: differential equation with delay, Cauchy problem, dependence of a solution on a delay function.
@article{VTAMU_2023_28_142_a3,
     author = {N. S. Borzov and T. V. Zhukovskaya and I. D. Serova},
     title = {Ordinary differential equations and differential equations with delay: general properties and features},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {137--154},
     publisher = {mathdoc},
     volume = {28},
     number = {142},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2023_28_142_a3/}
}
TY  - JOUR
AU  - N. S. Borzov
AU  - T. V. Zhukovskaya
AU  - I. D. Serova
TI  - Ordinary differential equations and differential equations with delay: general properties and features
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2023
SP  - 137
EP  - 154
VL  - 28
IS  - 142
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2023_28_142_a3/
LA  - ru
ID  - VTAMU_2023_28_142_a3
ER  - 
%0 Journal Article
%A N. S. Borzov
%A T. V. Zhukovskaya
%A I. D. Serova
%T Ordinary differential equations and differential equations with delay: general properties and features
%J Vestnik rossijskih universitetov. Matematika
%D 2023
%P 137-154
%V 28
%N 142
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTAMU_2023_28_142_a3/
%G ru
%F VTAMU_2023_28_142_a3
N. S. Borzov; T. V. Zhukovskaya; I. D. Serova. Ordinary differential equations and differential equations with delay: general properties and features. Vestnik rossijskih universitetov. Matematika, Tome 28 (2023) no. 142, pp. 137-154. http://geodesic.mathdoc.fr/item/VTAMU_2023_28_142_a3/