On the existence of a positive solution to a boundary value problem for one nonlinear functional-differential equation of fractional order
    
    
  
  
  
      
      
      
        
Vestnik rossijskih universitetov. Matematika, Tome 28 (2023) no. 142, pp. 101-110
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The following boundary value problem is considered:
\begin{align*}
{0+}^\alpha x(t)+f \left (t,\left(Tx \right)(t) \right)=0,\ \ 01, \  \text{where} \ \ \alpha\in (n-1,n], \ \ n\in \mathbb{N}, \ \  n>2,\\
(0)=x'(0)=\dots x^{(n-2)}(0)=0,\\
(1)=0.
\end{align*}
This problem reduces to an equivalent integral equation with a monotone operator in the space $C$ of functions continuous on $[0,1]$ (the space $C$ is assumed to be an ordered cone of nonnegative functions satisfying the boundary conditions of the problem under consideration). Using the well-known Krasnosel'sky theorem about fixed points of the operator of expansion (compression) of a cone, the existence of at least one positive solution of the problem under consideration is proved. An example is given that illustrates the fulfillment of sufficient conditions that ensure the solvability of the problem. The results obtained continue the author's research (see [Russian Universities Reports. Mathematics, 27:138 (2022), 129–135]) devoted to the existence and uniqueness of positive solutions to boundary value problems for nonlinear functional-differential equations.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
functional-differential equation of fractional order, boundary value problem, Green's function.
Mots-clés : positive solution
                    
                  
                
                
                Mots-clés : positive solution
@article{VTAMU_2023_28_142_a0,
     author = {G. \`E. Abduragimov},
     title = {On the existence of a positive solution to a boundary value problem for one nonlinear functional-differential equation of fractional order},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {101--110},
     publisher = {mathdoc},
     volume = {28},
     number = {142},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2023_28_142_a0/}
}
                      
                      
                    TY - JOUR AU - G. È. Abduragimov TI - On the existence of a positive solution to a boundary value problem for one nonlinear functional-differential equation of fractional order JO - Vestnik rossijskih universitetov. Matematika PY - 2023 SP - 101 EP - 110 VL - 28 IS - 142 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTAMU_2023_28_142_a0/ LA - ru ID - VTAMU_2023_28_142_a0 ER -
%0 Journal Article %A G. È. Abduragimov %T On the existence of a positive solution to a boundary value problem for one nonlinear functional-differential equation of fractional order %J Vestnik rossijskih universitetov. Matematika %D 2023 %P 101-110 %V 28 %N 142 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTAMU_2023_28_142_a0/ %G ru %F VTAMU_2023_28_142_a0
G. È. Abduragimov. On the existence of a positive solution to a boundary value problem for one nonlinear functional-differential equation of fractional order. Vestnik rossijskih universitetov. Matematika, Tome 28 (2023) no. 142, pp. 101-110. http://geodesic.mathdoc.fr/item/VTAMU_2023_28_142_a0/
