On the existence of a positive solution to a boundary value problem for one nonlinear functional-differential equation of fractional order
Vestnik rossijskih universitetov. Matematika, Tome 28 (2023) no. 142, pp. 101-110

Voir la notice de l'article provenant de la source Math-Net.Ru

The following boundary value problem is considered: \begin{align*} {0+}^\alpha x(t)+f \left (t,\left(Tx \right)(t) \right)=0,\ \ 01, \ \text{where} \ \ \alpha\in (n-1,n], \ \ n\in \mathbb{N}, \ \ n>2,\\ (0)=x'(0)=\dots x^{(n-2)}(0)=0,\\ (1)=0. \end{align*} This problem reduces to an equivalent integral equation with a monotone operator in the space $C$ of functions continuous on $[0,1]$ (the space $C$ is assumed to be an ordered cone of nonnegative functions satisfying the boundary conditions of the problem under consideration). Using the well-known Krasnosel'sky theorem about fixed points of the operator of expansion (compression) of a cone, the existence of at least one positive solution of the problem under consideration is proved. An example is given that illustrates the fulfillment of sufficient conditions that ensure the solvability of the problem. The results obtained continue the author's research (see [Russian Universities Reports. Mathematics, 27:138 (2022), 129–135]) devoted to the existence and uniqueness of positive solutions to boundary value problems for nonlinear functional-differential equations.
Keywords: functional-differential equation of fractional order, boundary value problem, Green's function.
Mots-clés : positive solution
@article{VTAMU_2023_28_142_a0,
     author = {G. \`E. Abduragimov},
     title = {On the existence of a positive solution to a boundary value problem for one nonlinear functional-differential equation of fractional order},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {101--110},
     publisher = {mathdoc},
     volume = {28},
     number = {142},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2023_28_142_a0/}
}
TY  - JOUR
AU  - G. È. Abduragimov
TI  - On the existence of a positive solution to a boundary value problem for one nonlinear functional-differential equation of fractional order
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2023
SP  - 101
EP  - 110
VL  - 28
IS  - 142
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2023_28_142_a0/
LA  - ru
ID  - VTAMU_2023_28_142_a0
ER  - 
%0 Journal Article
%A G. È. Abduragimov
%T On the existence of a positive solution to a boundary value problem for one nonlinear functional-differential equation of fractional order
%J Vestnik rossijskih universitetov. Matematika
%D 2023
%P 101-110
%V 28
%N 142
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTAMU_2023_28_142_a0/
%G ru
%F VTAMU_2023_28_142_a0
G. È. Abduragimov. On the existence of a positive solution to a boundary value problem for one nonlinear functional-differential equation of fractional order. Vestnik rossijskih universitetov. Matematika, Tome 28 (2023) no. 142, pp. 101-110. http://geodesic.mathdoc.fr/item/VTAMU_2023_28_142_a0/