Mots-clés : distance, inclusion, existence of solution
@article{VTAMU_2022_27_137_a2,
author = {W. Merchela},
title = {Inclusions with mappings acting from a metric space to a space with distance},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {27--36},
year = {2022},
volume = {27},
number = {137},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2022_27_137_a2/}
}
W. Merchela. Inclusions with mappings acting from a metric space to a space with distance. Vestnik rossijskih universitetov. Matematika, Tome 27 (2022) no. 137, pp. 27-36. http://geodesic.mathdoc.fr/item/VTAMU_2022_27_137_a2/
[1] A. V. Dmitruk, A. A. Milyutin, N. P. Osmolovskii, “Teorema Lyusternika i teoriya ekstremuma”, UMN, 35:6(216) (1980), 11–46 | MR | Zbl
[2] A. V. Arutyunov, “Nakryvayuschie otobrazheniya v metricheskikh prostranstvakh i nepodvizhnye tochki”, Doklady Akademii nauk, 416:2 (2007), 151–155 | Zbl
[3] A. V. Arutyunov, E. S. Zhukovskiy, S. E. Zhukovskiy, Z. T. Zhukovskaya, “Kantorovich's Fixed Point Theorem and Coincidence Point Theorems for Mappings in Vector Metric Spaces”, Set-Valued Var. Anal., 2021 | MR
[4] B. Zhang, W. Ouyang, “Coincidence points for set-valued mappings with directional regularity”, Fixed Point Theory, 22:1 (2021), 391–406 | DOI | MR | Zbl
[5] Yu. N. Zakharyan, T. N. Fomenko, “Coincidence preservation for a one-parameter family of pairs of Zamfirescu type multi-valued mappings”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2021, no. 1, 28–34 (In Russian) | Zbl
[6] E. S. Zhukovskii, “O tochkakh sovpadeniya vektornykh otobrazhenii”, Izv. vuzov. Matem., 2016, no. 10, 14–28 | Zbl
[7] A. Arutyunov, E. Avakov, B. Gel`man, A. Dmitruk, V. Obukhovskii, “Locally covering maps in metric spaces and coincidence points”, J. Fixed Points Theory and Applications, 5:1 (2009), 105–127 | DOI | MR | Zbl
[8] A. V. Arutyunov, “Ustoichivost tochek sovpadeniya i svoistva nakryvayuschikh otobrazhenii”, Matem. zametki, 86:2 (2009), 163–169 | Zbl
[9] A. V. Arutyunov, E. R. Avakov, S. E. Zhukovskiy, “Stability theorems for estimating the distance to a set of coincidence points”, SIAM Journal on Optimization, 25:2 (2015), 807–828 | DOI | MR | Zbl
[10] E. R. Avakov, A. V. Arutyunov, E. S. Zhukovskii, “Nakryvayuschie otobrazheniya i ikh prilozheniya k differentsialnym uravneniyam, ne razreshennym otnositelno proizvodnoi”, Differentsialnye uravneniya, 45:5 (2009), 613–634 | MR | Zbl
[11] A. V. Arutyunov, E. S. Zhukovskii, S. E. Zhukovskii, “O korrektnosti differentsialnykh uravnenii, ne razreshennykh otnositelno proizvodnoi”, Differentsialnye uravneniya, 47:11 (2011), 1523–1537 | MR | Zbl
[12] Aram Arutyunov, Valeriano Antunes de Oliveira, Fernando Lobo Pereira, Evgeniy Zhukovskiy, Sergey Zhukovskiy, “On the solvability of implicit differential inclusions”, Applicable Analysis, 94:1 (2015), 129–143 | DOI | MR | Zbl
[13] E. S. Zhukovskii, E. A. Pluzhnikova, “Nakryvayuschie otobrazheniya v proizvedenii metricheskikh prostranstv i kraevye zadachi dlya differentsialnykh uravnenii, ne razreshennykh otnositelno proizvodnoi”, Differentsialnye uravneniya, 49:4 (2013), 439–455 | Zbl
[14] E. S. Zhukovskii, “O vozmuscheniyakh vektorno nakryvayuschikh otobrazhenii i sistemakh uravnenii v metricheskikh prostranstvakh”, Sib. matem. zhurn., 57:2 (2016), 297–311 | MR | Zbl
[15] E. S. Zhukovskii, “O tochkakh sovpadeniya mnogoznachnykh vektornykh otobrazhenii metricheskikh prostranstv”, Matem. zametki, 100:3 (2016), 344–362 | MR | Zbl
[16] A. V. Arutyunov, A. V. Greshnov, “Teoriya $(q_1, q_2)$-kvazimetricheskikh prostranstv i tochki sovpadeniya”, Dokl. RAN., 469:5 (2016), 527–531 | Zbl
[17] E. S. Zhukovskii, “Nepodvizhnye tochki szhimayuschikh otobrazhenii f-kvazimetricheskikh prostranstv”, Sib. matem. zhurn., 59:6 (2018), 1338–1350 | MR | Zbl
[18] T. N. Fomenko, “Suschestvovanie nulei mnogoznachnykh funktsionalov, sovpadeniya i nepodvizhnye tochki v f-kvazimetricheskom prostranstve”, Matem. zametki., 110:4 (2021), 598–609 | MR | Zbl
[19] E. S. Zhukovskii, V. Merchela, “O nakryvayuschikh otobrazheniyakh v obobschennykh metricheskikh prostranstvakh v issledovanii neyavnykh differentsialnykh uravnenii”, Ufimskii matemticheskii zhurnal, 12:4 (2020), 42–55 | Zbl
[20] W. Merchela, “About Arutyunov theorem of coincidence point for two mapping in metric spaces”, Tambov University Reports. Series: Natural and Technical Sciences, 23:121 (2018), 65–73 (In Russian)
[21] S. Benarab, E. S. Zhukovskii, W. Merchela, “Theorems on perturbations of covering mappings in spaces with a distance and in spaces with a binary relation”, Trudy Inst. Mat. i Mekh. UrO RAN, 25, no. 4, 2019, 52–63 (In Russian) | MR
[22] T. V. Zhukovskaia, A. I. Shindiapin, W. Merchela, “On the coincidence points of the mappings in generalized metric spaces”, Russian Universities Reports. Mathematics, 25:129 (2020), 18–24 (In Russian)
[23] E. O. Burlakov, T. V. Zhukovskaya, E. S. Zhukovskiy, N. P. Puchkov, “Applications of covering mappings in the theory of implicit differential equations”, Proceedings of the IV International Scientific Conference “Actual Problems of Applied Mathematics”. Kabardino-Balkar Republic, Nalchik, Elbrus Region, May 22–26, 2018. Part I, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 165, VINITI, Moscow, 2019, 21–33
[24] A. V. Arutyunov, E. S. Zhukovskii, S. E. Zhukovskii, “O moschnosti mnozhestva tochek sovpadeniya otobrazhenii metricheskikh, normirovannykh i chastichno uporyadochennykh prostranstv”, Matem. sb., 209:8 (2018), 3–28 | MR | Zbl