Inclusions with mappings acting from a metric space to a space with distance
Vestnik rossijskih universitetov. Matematika, Tome 27 (2022) no. 137, pp. 27-36 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article deals with an inclusion in which a multivalued mapping acts from a metric space $ (X, \rho) $ into a set $Y$ with distance $d.$ This distance satisfies only the first axiom of the metric: $d(y_1, y_2)$ is equal to zero if and only if $y_1= y_2.$ The distance does not have to be symmetric or to satisfy the triangle inequality. For the space $(Y, d),$ the simplest concepts (of a ball, convergence, the distance from a point to a set) are defined, and for a multivalued map $G: X \rightrightarrows Y,$ the sets of covering, Lipschitz and closedness are introduced. In these terms (allowing us to adapt the classical conditions of covering, Lipschitz property and closedness of mappings of metric spaces to the maps with values in $(Y,d)$ and to weaken such conditions), a theorem on solvability of the inclusion $F(x,x) \ni \widehat{y} $ is formulated, and an estimate for the deviation in the space $(X,\rho)$ of the set of solutions from a given element $x_0 \in X$ is given. The main conditions of the obtained statement are the following: for any $x$ from some ball, the pair $(x,\widehat{y})$ belongs to the $\alpha$-covering set of the mapping $F(\cdot, x)$ and to the $\beta$-Lipschitz set of the mapping $F(x,\cdot),$ where $\alpha> \beta.$ The proof of the corresponding statement is based on the construction of the sequences $\{x_n\} \subset X$ and $\{y_n\} \subset Y$ satisfying the relations \begin{equation*} y_n \in F(x_{n}, x_{n}), \ \ \widehat{y} \in F(x_{n+1}, x_{n}), \ \alpha \rho(x_{n+1}, x_n) \leq d(\widehat{y}, y_n) \leq \beta \rho(x_{n}, x_{n-1}). \end{equation*} Also, in the paper, we obtain sufficient conditions for the stability of solutions of the considered inclusion to changes in the multivalued mapping $F$ and in the element $\widehat{y}.$
Keywords: metric, covering multivalued mapping.
Mots-clés : distance, inclusion, existence of solution
@article{VTAMU_2022_27_137_a2,
     author = {W. Merchela},
     title = {Inclusions with mappings acting from a metric space to a space with distance},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {27--36},
     year = {2022},
     volume = {27},
     number = {137},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2022_27_137_a2/}
}
TY  - JOUR
AU  - W. Merchela
TI  - Inclusions with mappings acting from a metric space to a space with distance
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2022
SP  - 27
EP  - 36
VL  - 27
IS  - 137
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2022_27_137_a2/
LA  - ru
ID  - VTAMU_2022_27_137_a2
ER  - 
%0 Journal Article
%A W. Merchela
%T Inclusions with mappings acting from a metric space to a space with distance
%J Vestnik rossijskih universitetov. Matematika
%D 2022
%P 27-36
%V 27
%N 137
%U http://geodesic.mathdoc.fr/item/VTAMU_2022_27_137_a2/
%G ru
%F VTAMU_2022_27_137_a2
W. Merchela. Inclusions with mappings acting from a metric space to a space with distance. Vestnik rossijskih universitetov. Matematika, Tome 27 (2022) no. 137, pp. 27-36. http://geodesic.mathdoc.fr/item/VTAMU_2022_27_137_a2/

[1] A. V. Dmitruk, A. A. Milyutin, N. P. Osmolovskii, “Teorema Lyusternika i teoriya ekstremuma”, UMN, 35:6(216) (1980), 11–46 | MR | Zbl

[2] A. V. Arutyunov, “Nakryvayuschie otobrazheniya v metricheskikh prostranstvakh i nepodvizhnye tochki”, Doklady Akademii nauk, 416:2 (2007), 151–155 | Zbl

[3] A. V. Arutyunov, E. S. Zhukovskiy, S. E. Zhukovskiy, Z. T. Zhukovskaya, “Kantorovich's Fixed Point Theorem and Coincidence Point Theorems for Mappings in Vector Metric Spaces”, Set-Valued Var. Anal., 2021 | MR

[4] B. Zhang, W. Ouyang, “Coincidence points for set-valued mappings with directional regularity”, Fixed Point Theory, 22:1 (2021), 391–406 | DOI | MR | Zbl

[5] Yu. N. Zakharyan, T. N. Fomenko, “Coincidence preservation for a one-parameter family of pairs of Zamfirescu type multi-valued mappings”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2021, no. 1, 28–34 (In Russian) | Zbl

[6] E. S. Zhukovskii, “O tochkakh sovpadeniya vektornykh otobrazhenii”, Izv. vuzov. Matem., 2016, no. 10, 14–28 | Zbl

[7] A. Arutyunov, E. Avakov, B. Gel`man, A. Dmitruk, V. Obukhovskii, “Locally covering maps in metric spaces and coincidence points”, J. Fixed Points Theory and Applications, 5:1 (2009), 105–127 | DOI | MR | Zbl

[8] A. V. Arutyunov, “Ustoichivost tochek sovpadeniya i svoistva nakryvayuschikh otobrazhenii”, Matem. zametki, 86:2 (2009), 163–169 | Zbl

[9] A. V. Arutyunov, E. R. Avakov, S. E. Zhukovskiy, “Stability theorems for estimating the distance to a set of coincidence points”, SIAM Journal on Optimization, 25:2 (2015), 807–828 | DOI | MR | Zbl

[10] E. R. Avakov, A. V. Arutyunov, E. S. Zhukovskii, “Nakryvayuschie otobrazheniya i ikh prilozheniya k differentsialnym uravneniyam, ne razreshennym otnositelno proizvodnoi”, Differentsialnye uravneniya, 45:5 (2009), 613–634 | MR | Zbl

[11] A. V. Arutyunov, E. S. Zhukovskii, S. E. Zhukovskii, “O korrektnosti differentsialnykh uravnenii, ne razreshennykh otnositelno proizvodnoi”, Differentsialnye uravneniya, 47:11 (2011), 1523–1537 | MR | Zbl

[12] Aram Arutyunov, Valeriano Antunes de Oliveira, Fernando Lobo Pereira, Evgeniy Zhukovskiy, Sergey Zhukovskiy, “On the solvability of implicit differential inclusions”, Applicable Analysis, 94:1 (2015), 129–143 | DOI | MR | Zbl

[13] E. S. Zhukovskii, E. A. Pluzhnikova, “Nakryvayuschie otobrazheniya v proizvedenii metricheskikh prostranstv i kraevye zadachi dlya differentsialnykh uravnenii, ne razreshennykh otnositelno proizvodnoi”, Differentsialnye uravneniya, 49:4 (2013), 439–455 | Zbl

[14] E. S. Zhukovskii, “O vozmuscheniyakh vektorno nakryvayuschikh otobrazhenii i sistemakh uravnenii v metricheskikh prostranstvakh”, Sib. matem. zhurn., 57:2 (2016), 297–311 | MR | Zbl

[15] E. S. Zhukovskii, “O tochkakh sovpadeniya mnogoznachnykh vektornykh otobrazhenii metricheskikh prostranstv”, Matem. zametki, 100:3 (2016), 344–362 | MR | Zbl

[16] A. V. Arutyunov, A. V. Greshnov, “Teoriya $(q_1, q_2)$-kvazimetricheskikh prostranstv i tochki sovpadeniya”, Dokl. RAN., 469:5 (2016), 527–531 | Zbl

[17] E. S. Zhukovskii, “Nepodvizhnye tochki szhimayuschikh otobrazhenii f-kvazimetricheskikh prostranstv”, Sib. matem. zhurn., 59:6 (2018), 1338–1350 | MR | Zbl

[18] T. N. Fomenko, “Suschestvovanie nulei mnogoznachnykh funktsionalov, sovpadeniya i nepodvizhnye tochki v f-kvazimetricheskom prostranstve”, Matem. zametki., 110:4 (2021), 598–609 | MR | Zbl

[19] E. S. Zhukovskii, V. Merchela, “O nakryvayuschikh otobrazheniyakh v obobschennykh metricheskikh prostranstvakh v issledovanii neyavnykh differentsialnykh uravnenii”, Ufimskii matemticheskii zhurnal, 12:4 (2020), 42–55 | Zbl

[20] W. Merchela, “About Arutyunov theorem of coincidence point for two mapping in metric spaces”, Tambov University Reports. Series: Natural and Technical Sciences, 23:121 (2018), 65–73 (In Russian)

[21] S. Benarab, E. S. Zhukovskii, W. Merchela, “Theorems on perturbations of covering mappings in spaces with a distance and in spaces with a binary relation”, Trudy Inst. Mat. i Mekh. UrO RAN, 25, no. 4, 2019, 52–63 (In Russian) | MR

[22] T. V. Zhukovskaia, A. I. Shindiapin, W. Merchela, “On the coincidence points of the mappings in generalized metric spaces”, Russian Universities Reports. Mathematics, 25:129 (2020), 18–24 (In Russian)

[23] E. O. Burlakov, T. V. Zhukovskaya, E. S. Zhukovskiy, N. P. Puchkov, “Applications of covering mappings in the theory of implicit differential equations”, Proceedings of the IV International Scientific Conference “Actual Problems of Applied Mathematics”. Kabardino-Balkar Republic, Nalchik, Elbrus Region, May 22–26, 2018. Part I, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 165, VINITI, Moscow, 2019, 21–33

[24] A. V. Arutyunov, E. S. Zhukovskii, S. E. Zhukovskii, “O moschnosti mnozhestva tochek sovpadeniya otobrazhenii metricheskikh, normirovannykh i chastichno uporyadochennykh prostranstv”, Matem. sb., 209:8 (2018), 3–28 | MR | Zbl