On Chaplygin's theorem for an implicit differential equation of order~$n$
Vestnik rossijskih universitetov. Matematika, Tome 26 (2021) no. 135, pp. 225-233

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Cauchy problem for the implicit differential equation of order $n$ $$g(t, x, \dot{x}, \ldots, x^{(n)}) = 0, \ \ t \in [0, T ], \ \ x(0) = A.$$ It is assumed that $A=(A_0, \ldots, A_{n-1}) \in \mathbb{R}^{n},$ the function $g: [0, T] \times \mathbb{R}^{n+1} \to \mathbb{R}$ is measurable with respect to the first argument $t \in [0, T],$ and for a fixed $t$, the function $g(t,\cdot): \mathbb{R}^{n+1} \to \mathbb{R}$ is right continuous and monotone in each of the first $n$ arguments, and is continuous in the last $n+1 $-th argument. It is also assumed that for some sufficiently smooth functions $\eta, \nu$, there hold the inequalities \begin{align*} \nu^{(i)}(0) \geq A_i \geq {\eta}^{(i)}(0), \ \, i=\overline{0,n-1}, \ {\nu}^{(n)}(t) \geq {\eta}^{(n)}(t), \ \, t\in [0,T];\\ g\big(t,\nu(t),\dot{\nu}(t),\ldots,\nu^{(n)}(t)\big)\geq 0, \ g\big(t,\eta(t),\dot{\eta}(t),\ldots,\eta^{(n)}(t)\big)\leq 0, \ t\in [0,T]. \end{align*} Sufficient conditions for the solvability of the Cauchy problem are derived as well as estimates of its solutions. Moreover, it is shown that under the listed conditions, the set of solutions satisfying the inequalities $ {\nu}^{(n)} (t) \leq {x}^{(n)} (t ) \leq {\nu}^{(n)} (t)$ is not empty and contains solutions with the largest and the smallest $n$-th derivative. This statement is similar to the classical Chaplygin theorem on differential inequality. The proof method uses results on the solvability of equations in partially ordered spaces. Examples of applying the results obtained to the study of second-order implicit differential equations are given.
Keywords: implicit differential equation of order $n$, largest and smallest solutions, estimates of solutions, Chaplygin's theorem on differential inequality.
@article{VTAMU_2021_26_135_a0,
     author = {S. Benarab},
     title = {On {Chaplygin's} theorem for an implicit differential equation of order~$n$},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {225--233},
     publisher = {mathdoc},
     volume = {26},
     number = {135},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2021_26_135_a0/}
}
TY  - JOUR
AU  - S. Benarab
TI  - On Chaplygin's theorem for an implicit differential equation of order~$n$
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2021
SP  - 225
EP  - 233
VL  - 26
IS  - 135
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2021_26_135_a0/
LA  - ru
ID  - VTAMU_2021_26_135_a0
ER  - 
%0 Journal Article
%A S. Benarab
%T On Chaplygin's theorem for an implicit differential equation of order~$n$
%J Vestnik rossijskih universitetov. Matematika
%D 2021
%P 225-233
%V 26
%N 135
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTAMU_2021_26_135_a0/
%G ru
%F VTAMU_2021_26_135_a0
S. Benarab. On Chaplygin's theorem for an implicit differential equation of order~$n$. Vestnik rossijskih universitetov. Matematika, Tome 26 (2021) no. 135, pp. 225-233. http://geodesic.mathdoc.fr/item/VTAMU_2021_26_135_a0/