Two-sided estimates for solutions of boundary value problems for implicit differential equations
Vestnik rossijskih universitetov. Matematika, Tome 26 (2021) no. 134, pp. 216-220

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a two-point (including periodic) boundary value problem for the following system of differential equations that are not resolved with respect to the derivative of the desired function: $$ f_i (t, x, \dot {x}, \dot {x}_i) = 0, \ \ i = \overline{1, n}. $$ Here, for any $i = \overline{1, n},$ the function $f_i: [0,1] \times \mathbb{R}^n \times \mathbb {R}^n \times \mathbb{R} \to \mathbb {R}$ is measurable in the first argument, continuous in the last argument, right-continuous, and satisfies the special condition of monotonicity in each component of the second and third arguments. Assertions about the existence and two-sided estimates of solutions (of the type of Chaplygin's theorem on differential inequality) are obtained. Conditions for the existence of the largest and the smallest (with respect to a special order) solution are also obtained. The study is based on results on abstract equations with mappings acting from a partially ordered space to an arbitrary set (see [S. Benarab, Z. T. Zhukovskaya, E. S. Zhukovskiy, S. E. Zhukovskiy. On functional and differential inequalities and their applications to control problems // Differential Equations, 2020, 56:11, 1440–1451]).
Keywords: implicit differential equation, boundary value problem, estimates of solutions, Chaplygin's theorem on differential inequality.
Mots-clés : existence of solutions
@article{VTAMU_2021_26_134_a7,
     author = {S. Benarab},
     title = {Two-sided estimates for solutions of boundary value problems for implicit differential equations},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {216--220},
     publisher = {mathdoc},
     volume = {26},
     number = {134},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2021_26_134_a7/}
}
TY  - JOUR
AU  - S. Benarab
TI  - Two-sided estimates for solutions of boundary value problems for implicit differential equations
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2021
SP  - 216
EP  - 220
VL  - 26
IS  - 134
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2021_26_134_a7/
LA  - ru
ID  - VTAMU_2021_26_134_a7
ER  - 
%0 Journal Article
%A S. Benarab
%T Two-sided estimates for solutions of boundary value problems for implicit differential equations
%J Vestnik rossijskih universitetov. Matematika
%D 2021
%P 216-220
%V 26
%N 134
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTAMU_2021_26_134_a7/
%G ru
%F VTAMU_2021_26_134_a7
S. Benarab. Two-sided estimates for solutions of boundary value problems for implicit differential equations. Vestnik rossijskih universitetov. Matematika, Tome 26 (2021) no. 134, pp. 216-220. http://geodesic.mathdoc.fr/item/VTAMU_2021_26_134_a7/