Two-sided estimates for solutions of boundary value problems for implicit differential equations
Vestnik rossijskih universitetov. Matematika, Tome 26 (2021) no. 134, pp. 216-220
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a two-point (including periodic) boundary value problem for the following system of differential equations that are not resolved with respect to the derivative of the desired function:
$$ f_i (t, x, \dot {x}, \dot {x}_i) = 0, \ \ i = \overline{1, n}. $$
Here, for any $i = \overline{1, n},$ the function $f_i: [0,1] \times \mathbb{R}^n \times \mathbb {R}^n \times \mathbb{R} \to \mathbb {R}$ is measurable in the first argument, continuous in the last argument, right-continuous, and satisfies the special condition of monotonicity in each component of the second and third arguments.
Assertions about the existence and two-sided estimates of solutions (of the type of Chaplygin's theorem on differential inequality) are obtained. Conditions for the existence of the largest and the smallest (with respect to a special order) solution are also obtained. The study is based on results on abstract equations with mappings acting from a partially ordered space to an arbitrary set (see [S. Benarab, Z. T. Zhukovskaya, E. S. Zhukovskiy, S. E. Zhukovskiy. On functional and differential inequalities and their applications to control problems // Differential Equations, 2020, 56:11, 1440–1451]).
Keywords:
implicit differential equation, boundary value problem, estimates of solutions, Chaplygin's theorem on differential inequality.
Mots-clés : existence of solutions
Mots-clés : existence of solutions
@article{VTAMU_2021_26_134_a7,
author = {S. Benarab},
title = {Two-sided estimates for solutions of boundary value problems for implicit differential equations},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {216--220},
publisher = {mathdoc},
volume = {26},
number = {134},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2021_26_134_a7/}
}
TY - JOUR AU - S. Benarab TI - Two-sided estimates for solutions of boundary value problems for implicit differential equations JO - Vestnik rossijskih universitetov. Matematika PY - 2021 SP - 216 EP - 220 VL - 26 IS - 134 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTAMU_2021_26_134_a7/ LA - ru ID - VTAMU_2021_26_134_a7 ER -
%0 Journal Article %A S. Benarab %T Two-sided estimates for solutions of boundary value problems for implicit differential equations %J Vestnik rossijskih universitetov. Matematika %D 2021 %P 216-220 %V 26 %N 134 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTAMU_2021_26_134_a7/ %G ru %F VTAMU_2021_26_134_a7
S. Benarab. Two-sided estimates for solutions of boundary value problems for implicit differential equations. Vestnik rossijskih universitetov. Matematika, Tome 26 (2021) no. 134, pp. 216-220. http://geodesic.mathdoc.fr/item/VTAMU_2021_26_134_a7/