A counterexample to the stochastic version of the Brouwer fixed point theorem
Vestnik rossijskih universitetov. Matematika, Tome 26 (2021) no. 134, pp. 143-150
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that the stochastic counterpart of the classical fixed point theorem for continuous maps in a finite dimensional Euclidean space (“Brouwer's theorem”) is not, in general, true. This result implies, in particular, that a careful choice of invariant sets in the stochastic version of Brouwer's theorem is necessary in the theory of stochastic nonlinear operators.
Keywords:
local operators, convergence in probability, fixed points.
@article{VTAMU_2021_26_134_a3,
author = {A. V. Ponosov},
title = {A counterexample to the stochastic version of the {Brouwer} fixed point theorem},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {143--150},
publisher = {mathdoc},
volume = {26},
number = {134},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2021_26_134_a3/}
}
TY - JOUR AU - A. V. Ponosov TI - A counterexample to the stochastic version of the Brouwer fixed point theorem JO - Vestnik rossijskih universitetov. Matematika PY - 2021 SP - 143 EP - 150 VL - 26 IS - 134 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTAMU_2021_26_134_a3/ LA - ru ID - VTAMU_2021_26_134_a3 ER -
A. V. Ponosov. A counterexample to the stochastic version of the Brouwer fixed point theorem. Vestnik rossijskih universitetov. Matematika, Tome 26 (2021) no. 134, pp. 143-150. http://geodesic.mathdoc.fr/item/VTAMU_2021_26_134_a3/