A counterexample to the stochastic version of the Brouwer fixed point theorem
Vestnik rossijskih universitetov. Matematika, Tome 26 (2021) no. 134, pp. 143-150

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the stochastic counterpart of the classical fixed point theorem for continuous maps in a finite dimensional Euclidean space (“Brouwer's theorem”) is not, in general, true. This result implies, in particular, that a careful choice of invariant sets in the stochastic version of Brouwer's theorem is necessary in the theory of stochastic nonlinear operators.
Keywords: local operators, convergence in probability, fixed points.
@article{VTAMU_2021_26_134_a3,
     author = {A. V. Ponosov},
     title = {A counterexample to the stochastic version of the {Brouwer} fixed point theorem},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {143--150},
     publisher = {mathdoc},
     volume = {26},
     number = {134},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2021_26_134_a3/}
}
TY  - JOUR
AU  - A. V. Ponosov
TI  - A counterexample to the stochastic version of the Brouwer fixed point theorem
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2021
SP  - 143
EP  - 150
VL  - 26
IS  - 134
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2021_26_134_a3/
LA  - ru
ID  - VTAMU_2021_26_134_a3
ER  - 
%0 Journal Article
%A A. V. Ponosov
%T A counterexample to the stochastic version of the Brouwer fixed point theorem
%J Vestnik rossijskih universitetov. Matematika
%D 2021
%P 143-150
%V 26
%N 134
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTAMU_2021_26_134_a3/
%G ru
%F VTAMU_2021_26_134_a3
A. V. Ponosov. A counterexample to the stochastic version of the Brouwer fixed point theorem. Vestnik rossijskih universitetov. Matematika, Tome 26 (2021) no. 134, pp. 143-150. http://geodesic.mathdoc.fr/item/VTAMU_2021_26_134_a3/