@article{VTAMU_2021_26_133_a5,
author = {V. V. Provotorov and A. P. Zhabko},
title = {Stability of a weak solution for a hyperbolic system with distributed parameters on a graph},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {55--67},
year = {2021},
volume = {26},
number = {133},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2021_26_133_a5/}
}
TY - JOUR AU - V. V. Provotorov AU - A. P. Zhabko TI - Stability of a weak solution for a hyperbolic system with distributed parameters on a graph JO - Vestnik rossijskih universitetov. Matematika PY - 2021 SP - 55 EP - 67 VL - 26 IS - 133 UR - http://geodesic.mathdoc.fr/item/VTAMU_2021_26_133_a5/ LA - ru ID - VTAMU_2021_26_133_a5 ER -
%0 Journal Article %A V. V. Provotorov %A A. P. Zhabko %T Stability of a weak solution for a hyperbolic system with distributed parameters on a graph %J Vestnik rossijskih universitetov. Matematika %D 2021 %P 55-67 %V 26 %N 133 %U http://geodesic.mathdoc.fr/item/VTAMU_2021_26_133_a5/ %G ru %F VTAMU_2021_26_133_a5
V. V. Provotorov; A. P. Zhabko. Stability of a weak solution for a hyperbolic system with distributed parameters on a graph. Vestnik rossijskih universitetov. Matematika, Tome 26 (2021) no. 133, pp. 55-67. http://geodesic.mathdoc.fr/item/VTAMU_2021_26_133_a5/
[1] V. V. Provotorov, S. M. Sergeev, A. A. Part, “Solvability of hyperbolic systems with distributed parameters on the graph in the weak formulation”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 14:1 (2019), 107–117 | MR
[2] O. A. Ladyzhenskaya, Boundary Value Problems of Mathematical Physics, Nauka Publ., Moscow, 1973, 407 pp. | MR
[3] A. P. Zhabko, A. I. Shindyapin, V. V. Provotorov, “Stability of weak solutions of parabolic systems with distributed parameters on the graph”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 15:4 (2019), 457–471 | MR
[4] V. V. Provotorov, V. I. Ryazhskikh, Yu. A. Gnilitskaya, “Unique weak solvability of nonlinear initial boundary value problem with distributed parameters in the netlike domain”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 13:3 (2017), 264–277 | MR
[5] A. S. Volkova, V. V. Provotorov, “Generalized solutions and generalized eigenfunctions of boundary-value problems on a geometric graph”, Russian Mathematics, 58:3 (2014), 1–13 | DOI | MR | Zbl
[6] V. V. Provotorov, E. N. Provotorova, “Synthesis of optimal boundary control of parabolic systems with delay and distributed parameters on the graph”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 13:2 (2017), 209–224 | MR
[7] V. V. Provotorov, “Expansion of eigenfunctions of Sturm-Liouville problem on astar graph”, Russian Mathematics, 3 (2008), 45–57 | DOI | MR | Zbl
[8] O. A. Ladyzhenskaya, A Mixed Problem for Hyperbolic Equations, GITTL, M., 1953, 282 pp. (In Russian)
[9] A. P. Zhabko, V. V. Provotorov, O. R. Balaban, “Stabilization of weak solutions of parabolic systems with distributed parameters on the graph”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 15:2 (2019), 187–198 | MR
[10] J.-L. Lions, Some Methods of Solving Non-Linear Boundary Value Problems, Mir Publ., Moscow, 1972, 587 pp. | MR
[11] V. V. Provotorov, E. N. Provotorova, “Optimal control of the linearized Navier-Stokes system in a netlike domain”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 13:4 (2017), 431–443 | MR
[12] M. A. Artemov, E. S. Baranovskii, A. P. Zhabko, V. V. Provotorov, “On a 3D model of non-isothermal flows in a pipeline network”, Journal of Physics. Conference Series, 1203 (2019), Article ID 012094
[13] S. L. Podvalny, V. V. Provotorov, “Determining the starting function in the task of observing the parabolic system with distributed parameters on the graph”, Vestnik of Voronezh State Technical University, 10:6 (2014), 29–35