On stability of solutions of integral equations\\ in the class of measurable functions
Vestnik rossijskih universitetov. Matematika, Tome 26 (2021) no. 133, pp. 44-54

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider the equation $G(x)=\tilde{y},$ where the mapping $G$ acts from a metric space $X$ into a space $Y,$ on which a distance is defined, $\tilde{y} \in Y.$ The metric in $X$ and the distance in $Y$ can take on the value $\infty,$ the distance satisfies only one property of a metric: the distance between $y, z \in Y$ is zero if and only if $y=z.$ For mappings $X \to Y$ the notions of sets of covering, Lipschitz property, and closedness are defined. In these terms, the assertion is obtained about the stability in the metric space $X$ of solutions of the considered equation to changes of the mapping $G$ and the element $\tilde{y}.$ This assertion is applied to the study of the integral equation $$ f \big(t, \int_0^1 \mathcal{K}(t,s)x(s) ds, x(t)\big)=\tilde{y}(t), \ \ t \in [0.1], $$ with respect to an unknown Lebesgue measurable function $x: [0,1] \to \mathbb {R}.$ Sufficient conditions are obtained for the stability of solutions (in the space of measurable functions with the topology of uniform convergence) to changes of the functions $f, \mathcal{K}, \tilde{y}.$
Keywords: operator equation; existence of solutions; stability of solutions; covering mapping; distance; space of measurable functions; integral equation.
@article{VTAMU_2021_26_133_a4,
     author = {W. Merchela},
     title = {On stability of solutions of integral equations\\ in the class of measurable functions},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {44--54},
     publisher = {mathdoc},
     volume = {26},
     number = {133},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2021_26_133_a4/}
}
TY  - JOUR
AU  - W. Merchela
TI  - On stability of solutions of integral equations\\ in the class of measurable functions
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2021
SP  - 44
EP  - 54
VL  - 26
IS  - 133
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2021_26_133_a4/
LA  - ru
ID  - VTAMU_2021_26_133_a4
ER  - 
%0 Journal Article
%A W. Merchela
%T On stability of solutions of integral equations\\ in the class of measurable functions
%J Vestnik rossijskih universitetov. Matematika
%D 2021
%P 44-54
%V 26
%N 133
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTAMU_2021_26_133_a4/
%G ru
%F VTAMU_2021_26_133_a4
W. Merchela. On stability of solutions of integral equations\\ in the class of measurable functions. Vestnik rossijskih universitetov. Matematika, Tome 26 (2021) no. 133, pp. 44-54. http://geodesic.mathdoc.fr/item/VTAMU_2021_26_133_a4/