On stability of solutions of integral equations in the class of measurable functions
Vestnik rossijskih universitetov. Matematika, Tome 26 (2021) no. 133, pp. 44-54
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Consider the equation $G(x)=\tilde{y},$ where the mapping $G$ acts from a metric space $X$ into a space $Y,$ on which a distance is defined, $\tilde{y} \in Y.$ The metric in $X$ and the distance in $Y$ can take on the value $\infty,$ the distance satisfies only one property of a metric: the distance between $y, z \in Y$ is zero if and only if $y=z.$ For mappings $X \to Y$ the notions of sets of covering, Lipschitz property, and closedness are defined. In these terms, the assertion is obtained about the stability in the metric space $X$ of solutions of the considered equation to changes of the mapping $G$ and the element $\tilde{y}.$ This assertion is applied to the study of the integral equation $$ f \big(t, \int_0^1 \mathcal{K}(t,s)x(s) ds, x(t)\big)=\tilde{y}(t), \ \ t \in [0.1], $$ with respect to an unknown Lebesgue measurable function $x: [0,1] \to \mathbb {R}.$ Sufficient conditions are obtained for the stability of solutions (in the space of measurable functions with the topology of uniform convergence) to changes of the functions $f, \mathcal{K}, \tilde{y}.$
Keywords: operator equation; existence of solutions; stability of solutions; covering mapping; distance; space of measurable functions; integral equation.
@article{VTAMU_2021_26_133_a4,
     author = {W. Merchela},
     title = {On stability of solutions of integral equations
 in the class of measurable functions},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {44--54},
     year = {2021},
     volume = {26},
     number = {133},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2021_26_133_a4/}
}
TY  - JOUR
AU  - W. Merchela
TI  - On stability of solutions of integral equations
 in the class of measurable functions
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2021
SP  - 44
EP  - 54
VL  - 26
IS  - 133
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2021_26_133_a4/
LA  - ru
ID  - VTAMU_2021_26_133_a4
ER  - 
%0 Journal Article
%A W. Merchela
%T On stability of solutions of integral equations
 in the class of measurable functions
%J Vestnik rossijskih universitetov. Matematika
%D 2021
%P 44-54
%V 26
%N 133
%U http://geodesic.mathdoc.fr/item/VTAMU_2021_26_133_a4/
%G ru
%F VTAMU_2021_26_133_a4
W. Merchela. On stability of solutions of integral equations
 in the class of measurable functions. Vestnik rossijskih universitetov. Matematika, Tome 26 (2021) no. 133, pp. 44-54. http://geodesic.mathdoc.fr/item/VTAMU_2021_26_133_a4/

[1] T. Diogo, A. Pedas, G. Vainikko, “Integral equations of the third kind in $L^p$ spaces”, J. Integral Equations Applications, 32:4 (2020), 417–427 | MR | Zbl

[2] R. Precup, Methods in Nonlinear Integral Equations, Kluwer Acad. Publ., Dordrecht, 2002 | MR | Zbl

[3] C. Corduneanu, Integral Equations and Applications, Cambridge Univ. Press, Cambridge–New York, 1991 | MR | Zbl

[4] A. V. Arutyunov, E. S. Zhukovskiy, S. E. Zhukovskiy, “Covering mappings and well-posedness of nonlinear Volterra equations”, Nonlinear Analysis: Theory, Methods and Applications, 75:3 (2012), 1026–1044 | MR | Zbl

[5] T.V. Zhukovskaya, “O prodolzhenii reshenii nelineinogo uravneniya Volterra”, Vestnik Tambovskogo universiteta. Seriya: estestvennye i tekhnicheskie nauki, 17:3 (2012), 857–866 | MR

[6] E. R. Avakov, A. V. Arutyunov, E. S. Zhukovskii, “Nakryvayuschie otobrazheniya i ikh prilozheniya k differentsialnym uravneniyam, ne razreshennym otnositelno proizvodnoi”, Differentsialnye uravneniya, 45:5 (2009), 613–634 | MR | Zbl

[7] A. V. Arutyunov, E. S. Zhukovskii, S. E. Zhukovskii, “O korrektnosti differentsialnykh uravnenii, ne razreshennykh otnositelno proizvodnoi”, Differentsialnye uravneniya, 47:11 (2011), 1523–1537 | MR | Zbl

[8] E. S. Zhukovskii, E. A. Pluzhnikova, “Nakryvayuschie otobrazheniya v proizvedenii metricheskikh prostranstv i kraevye zadachi dlya differentsialnykh uravnenii, ne razreshennykh otnositelno proizvodnoi”, Differentsialnye uravneniya, 49:4 (2013), 439–455 | Zbl

[9] E. S. Zhukovskii, E. A. Pluzhnikova, “Ob upravlenii ob'ektami, dvizhenie kotorykh opisyvaetsya neyavnymi nelineinymi differentsialnymi uravneniyami”, Avtomat. i telemekh., 2015, no. 1, 31–56 | Zbl

[10] E. S. Zhukovskii, E. A. Pluzhnikova, “Ob upravlenii ob'ektami, dvizhenie kotorykh opisyvaetsya neyavnymi nelineinymi differentsialnymi uravneniyami”, Avtomat. i telemekh., 2015, no. 1, 31–56 | Zbl

[11] A. V. Arutyunov, S. E. Zhukovskii, “Tochki sovpadeniya otobrazhenii v prostranstvakh s vektornoi metrikoi i ikh prilozheniya k differentsialnym uravneniyam i upravlyaemym sistemam”, Differentsialnye uravneniya, 53:11 (2017), 1473 | Zbl

[12] A. V. Arutyunov, A. V. Greshnov, “Teoriya $(q_1, q_2)$-kvazimetricheskikh prostranstv i tochki sovpadeniya”, Doklady RAN, 469:5 (2016), 527–531 | Zbl

[13] E. S. Zhukovskii, V . Merchela, “O nakryvayuschikh otobrazheniyakh v obobschennykh metricheskikh prostranstvakh v issledovanii neyavnykh differentsialnykh uravnenii”, Ufimskii matemticheskii zhurnal, 12:4 (2020), 42–55 | Zbl

[14] W. Merchela, “About Arutyunov theorem of coincidence point for two mapping in metric spaces”, Tambov University Reports. Series: Natural and Technical Sciences, 23:121 (2018), 65–73 (In Russian)

[15] S. Benarab, E. S. Zhukovskiy, W. Merchela, “Theorems on perturbations of covering mappings in spaces with a distance and in spaces with a binary relation”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 25, no. 4, 2019, 52–63 (In Russian) | MR

[16] E. O. Burlakov, T. V. Zhukovskaya, E. S. Zhukovskiy, N. P. Puchkov, “Applications of covering mappings in the theory of implicit differential equations”, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 165, 2019, 21–33 (In Russian)

[17] A. V. Arutyunov, “Nakryvayuschie otobrazheniya v metricheskikh prostranstvakh i nepodvizhnye tochki”, Doklady RAN, 416:2 (2007), 151–155 | Zbl

[18] A. V. Arutyunov, “Ustoichivost tochek sovpadeniya i svoistva nakryvayuschikh otobrazhenii”, Matem. zametki, 86:2 (2009), 163–169 | Zbl

[19] A. V. Arutyunov, “Ustoichivost tochek sovpadeniya i svoistva nakryvayuschikh otobrazhenii”, Matem. zametki, 86:2 (2009), 163–169 | Zbl

[20] I. V. Shragin, “Superpositional measurability under generalized caratheodory conditions”, Tambov University Reports. Series: Natural and Technical Sciences, 19:2 (2014), 476–478 (In Russian)

[21] E. S. Zhukovskii, “Ob uporyadochenno nakryvayuschikh otobrazheniyakh i integralnykh neravenstvakh tipa Chaplygina”, Algebra i analiz, 30:1 (2018), 96–127 ; E. S. Zhukovskiy, “On order covering maps in ordered spaces and Chaplygin-type inequalities”, St. Petersburg Mathematical Journal, 30:1 (2019), 73–94 | DOI | MR | Zbl

[22] A. D. Ioffe , V. M. Tikhomirov, Teoriya ekstremalnykh zadach, Nauka, M., 1974; A. D. Ioffe, V. M. Tihomirov, Theory of Extremal Problems, Stud. Math. Appl., 6, North-Holland, Amsterdam–New York, 1979 | MR | Zbl

[23] Yu. G. Borisovich, B. D. Gel'man, A. D. Myshkis, V. V. Obukhovskii, Introduction to the Theory of Multi-Valued Mappings and Differential Inclusions, Librokom Publ., Moscow, 2011 (In Russian) | MR