Optimization of discounted income for a structured population exposed to harvesting
Vestnik rossijskih universitetov. Matematika, Tome 26 (2021) no. 133, pp. 15-25
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A structured population the individuals of which are divided into $n$ age or typical groups $x_1,\ldots,x_n$ is considered. We assume that at any time moment $k,$ $k=0,1,2\ldots$ the size of the population $x(k)$ is determined by the normal autonomous system of difference equations $x(k+1)=F\bigl(x(k)\bigr)$, where $F(x)={\rm col}\bigl(f_1(x),\ldots,f_n(x)\bigr)$ are given vector functions with real non-negative components $f_i(x),$ $i=1,\ldots,n.$ We investigate the case when it is possible to influence the population size by means of harvesting. The model of the exploited population under discussion has the form $$ x(k+1)=F\bigl((1-u(k))x(k)\bigr),$$ where $u(k)=\bigl(u_1(k),\dots,u_n(k)\bigr)\in[0,1]^n$ is a control vector, which can be varied to achieve the best result of harvesting the resource. We assume that the cost of a conventional unit of each of $n$ classes is constant and equals to $C_i\geqslant 0,$ $i=1,\ldots,n.$ To determine the cost of the resource obtained as the result of harvesting, the discounted income function is introduced into consideration. It has the form $$ H_\alpha\bigl(\overline u,x(0)\bigr)={\sum\limits_{j=0}^{\infty}}\sum\limits_{i=1}^{n}C_ix_i(j)u_i(j)e^{-\alpha j}, $$ where $\alpha>0$ is the discount coefficient. The problem of constructing controls on finite and infinite time intervals at which the discounted income from the extraction of a renewable resource reaches the maximal value is solved. As a corollary, the results on the construction of the optimal harvesting mode for a homogeneous population are obtained (that is, for $n =1$).
Keywords: structured population; optimization problem for the average temporary gain; discounted income; optimal exploitation; mode of exploitation of the population.
@article{VTAMU_2021_26_133_a1,
     author = {A. V. Egorova},
     title = {Optimization of discounted income for a structured population exposed to harvesting},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {15--25},
     year = {2021},
     volume = {26},
     number = {133},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2021_26_133_a1/}
}
TY  - JOUR
AU  - A. V. Egorova
TI  - Optimization of discounted income for a structured population exposed to harvesting
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2021
SP  - 15
EP  - 25
VL  - 26
IS  - 133
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2021_26_133_a1/
LA  - ru
ID  - VTAMU_2021_26_133_a1
ER  - 
%0 Journal Article
%A A. V. Egorova
%T Optimization of discounted income for a structured population exposed to harvesting
%J Vestnik rossijskih universitetov. Matematika
%D 2021
%P 15-25
%V 26
%N 133
%U http://geodesic.mathdoc.fr/item/VTAMU_2021_26_133_a1/
%G ru
%F VTAMU_2021_26_133_a1
A. V. Egorova. Optimization of discounted income for a structured population exposed to harvesting. Vestnik rossijskih universitetov. Matematika, Tome 26 (2021) no. 133, pp. 15-25. http://geodesic.mathdoc.fr/item/VTAMU_2021_26_133_a1/

[1] E. Ya. Frisman, M. P. Kulakov, O. L. Revutskaya, O. L. Zhdanova, G. P. Neverova, “The key approaches and review of current researches on dynamics of structured and interacting populations”, Computer Research and Modeling, 11:1 (2019), 119–151 (In Russian) | MR

[2] G. P. Neverova, A. I. Abakumov, E. Ya. Frisman, “Dynamic modes of exploited limited population: results of modeling and numerical study”, Mathematical Biology and Bioinformatics, 11:1 (2016), 1–13 (In Russian)

[3] O. L. Revutskaya, E. Ya. Frisman, “Influence of stationary harvesting on development of a two-age population scenario”, Informatika i Sistemy Upravleniya, 53:3 (2017), 36–48 (In Russian)

[4] L. I. Rodina, “About one stochastic harvesting model of a renewed resourse”, Tambov University Reports. Series: Natural and Technical Sciences, 23:124 (2018), 685–695 (In Russian)

[5] L. I. Rodina, “Properties of average time prot in stochastic models of harvesting a renewable resource”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 28:2 (2018), 213–221 (In Russian) | MR | Zbl

[6] L. G. Hansen, F. Jensen, “Regulating fisheries under uncertainty”, Resource and Energy Economics, 50 (2017), 164–177

[7] A. O. Belyakov, A. A. Davydov, “Optimizatsiya effektivnosti tsiklicheskogo ispolzovaniya vozobnovlyaemogo resursa”, Trudy Instituta matematiki i mekhaniki UrO RAN, 22:2 (2016), 38–46; A. O. Belyakov, A. A. Davydov, “Efficiency Optimization for the Cyclic Use of a Renewable Resource”, Proceedings of the Steklov Institute of Mathematics, 299:suppl. 1 (2017), 14–21

[8] M. I. Zelikin, L. V. Lokutsievskiy, S. V. Skopincev, “On optimal harvesting of a resource on a circle”, Mathematical Notes, 102:4 (2017), 521–532 (In Russian) | Zbl

[9] A. O. Belyakov, V. M. Veliov, “On optimal harvesting in age-structured populations”, Dynamic Perspectives on Managerial Decision Making, 2016, 149–166

[10] A. V. Egorova,L. I. Rodina, “On optimal harvesting of renewable resource from the structured population”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 29:4 (2019), 501–517 (In Russian) | MR