Nondifferential Kuhn–Tucker theorems in constrained
Vestnik rossijskih universitetov. Matematika, Tome 25 (2020) no. 131, pp. 307-330
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to obtaining Kuhn-Tucker theorems in nondifferential form in constrained extremum problems in a Hilbert space. The constraints of the problems are specified by operators whose images are also embedded in a Hilbert space. These constraints contain parameters that are additively included in them. The basis for obtaining nondifferential Kuhn-Tucker theorems is the so-called perturbation method. The article consists of two main sections. The first of them is devoted to obtaining the nondifferential Lagrange principle in the case when the constrained extremum problem is convex. In this case, the Kuhn-Tucker theorem is its “regular part”. Various statements are also presented here that relate the Lagrange multipliers to the subdifferentiability properties of the convex value function of the problem. The main purpose of the first section is to trace how the classical construction of the Lagrange function in its regular and nonregular forms is “generated” by subdifferentials and asymptotic subdifferentials of the value function. This circumstance and the results of the first section make it possible to transfer the natural bridge from the convex parametric constrained extremum problems to similar nonlinear parametric problems of the second section in which the value function, generally speaking, is not convex. The central role here is played not by subdifferentials in the sense of convex analysis, but by subdifferentials of nonsmooth (nonlinear) analysis. As a result, in this case, the so-called modified (not classical) Lagrange function acts as the main construction. Its construction depends entirely on how subdifferentiability is understood in the sense of nonsmooth (nonlinear) analysis.
Keywords: constrained extremum problem, nondifferential Kuhn-Tucker theorem, value function, convex analysis, nonsmooth (nonlinear) analysis, subdifferentials.
Mots-clés : perturbation method
@article{VTAMU_2020_25_131_a6,
     author = {M. I. Sumin},
     title = {Nondifferential {Kuhn{\textendash}Tucker} theorems in constrained},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {307--330},
     year = {2020},
     volume = {25},
     number = {131},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2020_25_131_a6/}
}
TY  - JOUR
AU  - M. I. Sumin
TI  - Nondifferential Kuhn–Tucker theorems in constrained
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2020
SP  - 307
EP  - 330
VL  - 25
IS  - 131
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2020_25_131_a6/
LA  - ru
ID  - VTAMU_2020_25_131_a6
ER  - 
%0 Journal Article
%A M. I. Sumin
%T Nondifferential Kuhn–Tucker theorems in constrained
%J Vestnik rossijskih universitetov. Matematika
%D 2020
%P 307-330
%V 25
%N 131
%U http://geodesic.mathdoc.fr/item/VTAMU_2020_25_131_a6/
%G ru
%F VTAMU_2020_25_131_a6
M. I. Sumin. Nondifferential Kuhn–Tucker theorems in constrained. Vestnik rossijskih universitetov. Matematika, Tome 25 (2020) no. 131, pp. 307-330. http://geodesic.mathdoc.fr/item/VTAMU_2020_25_131_a6/

[1] V. M. Alekseev, V. M. Tikhomirovv, S. V. Fomin, Optimal Control, Plenum Press, New York, 1987 | MR | MR

[2] E. S. Levitin, Teoriya Vozmushchenii v Matematicheskom Programmirovanii i Prilozheniya, Nauka Publ., Moscow, 1992 (In Russian)

[3] A. F. Izmailov, Chuvstvitelnost v Optimizatsii, Fizmatlit Publ., Moscow, 2006 (In Russian)

[4] J. -P. Aubin, L’analyse Non Lineaire et ses Motivations Economiques, Masson, Paris-New York, 1984 | MR

[5] P. D. Loewen, CRM Proceedings and Lecture Notes, v. 2, Optimal Control via Nonsmooth Analysis, Amer. Math. Soc., Providence, RI, 1993 | MR

[6] F. H. Clarke, Optimization and Nonsmooth Analysis, A Wiley–Interscience Publication John Wiley and Sons, New York-Chichester-Brisbane-Toronto-Singapore, 1983 | Zbl

[7] B. S. Mordukhovich, Variational Analysis and Generalized Differentiation, I: Basic theory; II: Applications, Springer, Berlin, 2006 | MR

[8] F. H. Clarke, Yu. S. Ledyaev, R. J. Stern, P. R. Wolenski, Nonsmooth Analysis and Control Theory. Graduate Texts in Mathematics, v. 178, Springer-Verlag, New York, 1998 | MR

[9] M. I. Sumin, “Regularized parametric Kuhn–Tucker theorem in a Hilbert space”, Comput. Math. Math. Phys., 51:9 (2011), 1489–1509 | DOI | MR | Zbl

[10] M. I. Sumin, “Stable sequential convex programming in a Hilbert space and its application for solving unstable problems”, Comput. Math. Math. Phys., 54:1 (2014), 22–44 | DOI | MR | Zbl

[11] M. I. Sumin, “Stable sequential Kuhn–Tucker theorem in iterative form or a regularized Uzawa algorithm in a regular nonlinear programming problem”, Comput. Math. Math. Phys., 55:6 (2015), 935–961 | DOI | MR | Zbl

[12] M. I. Sumin, “Why regularization of Lagrange principle and Pontryagin maximum principle is needed and what it gives”, Tambov University Reports. Series: Natural and Technical Sciences, 23:4(124) (2018), 757–775 (In Russian)

[13] M. I. Sumin, “Regularized Lagrange principle and Pontryagin maximum principle in optimal control and in inverse problems”, Trudy Inst. Mat. Mekh. UrO RAN, 25:1 (2019), 279–296 (In Russian) | MR

[14] E. G. Golshtein, Teoriya Dvoistvennosti v Matematicheskom Programmirovanii i ee Prilozheniya, Nauka, M., 1971 (In Russian)

[15] M. I. Sumin, Nekorrektnye Zadachi i Metody ikh Resheniya. Materialy k Lektsiyam dlya Studentov Starshikh Kursov, Nizhnii Novgorod State University, Nizhnii Novgorod, 2009 (In Russian)

[16] F. P. Vasil’ev, Metody Optimizatsii: V 2-kh. kn., MCCME, Moscow, 2011 (In Russian)

[17] A. G. Sukharev, A. V. Timokhov, V. V. Fedorov, Kurs Metodov Optimizatsii, Nauka Publ., Moscow, 1986 (In Russian) | MR

[18] D. -P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods, Academic Press, New York-London-Paris-San Diego-SanFrancisco-Sao Paulo-Sydney-Tokyo-Toronto, 1982 | MR | MR | Zbl