Mots-clés : perturbation method
@article{VTAMU_2020_25_131_a6,
author = {M. I. Sumin},
title = {Nondifferential {Kuhn{\textendash}Tucker} theorems in constrained},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {307--330},
year = {2020},
volume = {25},
number = {131},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2020_25_131_a6/}
}
M. I. Sumin. Nondifferential Kuhn–Tucker theorems in constrained. Vestnik rossijskih universitetov. Matematika, Tome 25 (2020) no. 131, pp. 307-330. http://geodesic.mathdoc.fr/item/VTAMU_2020_25_131_a6/
[1] V. M. Alekseev, V. M. Tikhomirovv, S. V. Fomin, Optimal Control, Plenum Press, New York, 1987 | MR | MR
[2] E. S. Levitin, Teoriya Vozmushchenii v Matematicheskom Programmirovanii i Prilozheniya, Nauka Publ., Moscow, 1992 (In Russian)
[3] A. F. Izmailov, Chuvstvitelnost v Optimizatsii, Fizmatlit Publ., Moscow, 2006 (In Russian)
[4] J. -P. Aubin, L’analyse Non Lineaire et ses Motivations Economiques, Masson, Paris-New York, 1984 | MR
[5] P. D. Loewen, CRM Proceedings and Lecture Notes, v. 2, Optimal Control via Nonsmooth Analysis, Amer. Math. Soc., Providence, RI, 1993 | MR
[6] F. H. Clarke, Optimization and Nonsmooth Analysis, A Wiley–Interscience Publication John Wiley and Sons, New York-Chichester-Brisbane-Toronto-Singapore, 1983 | Zbl
[7] B. S. Mordukhovich, Variational Analysis and Generalized Differentiation, I: Basic theory; II: Applications, Springer, Berlin, 2006 | MR
[8] F. H. Clarke, Yu. S. Ledyaev, R. J. Stern, P. R. Wolenski, Nonsmooth Analysis and Control Theory. Graduate Texts in Mathematics, v. 178, Springer-Verlag, New York, 1998 | MR
[9] M. I. Sumin, “Regularized parametric Kuhn–Tucker theorem in a Hilbert space”, Comput. Math. Math. Phys., 51:9 (2011), 1489–1509 | DOI | MR | Zbl
[10] M. I. Sumin, “Stable sequential convex programming in a Hilbert space and its application for solving unstable problems”, Comput. Math. Math. Phys., 54:1 (2014), 22–44 | DOI | MR | Zbl
[11] M. I. Sumin, “Stable sequential Kuhn–Tucker theorem in iterative form or a regularized Uzawa algorithm in a regular nonlinear programming problem”, Comput. Math. Math. Phys., 55:6 (2015), 935–961 | DOI | MR | Zbl
[12] M. I. Sumin, “Why regularization of Lagrange principle and Pontryagin maximum principle is needed and what it gives”, Tambov University Reports. Series: Natural and Technical Sciences, 23:4(124) (2018), 757–775 (In Russian)
[13] M. I. Sumin, “Regularized Lagrange principle and Pontryagin maximum principle in optimal control and in inverse problems”, Trudy Inst. Mat. Mekh. UrO RAN, 25:1 (2019), 279–296 (In Russian) | MR
[14] E. G. Golshtein, Teoriya Dvoistvennosti v Matematicheskom Programmirovanii i ee Prilozheniya, Nauka, M., 1971 (In Russian)
[15] M. I. Sumin, Nekorrektnye Zadachi i Metody ikh Resheniya. Materialy k Lektsiyam dlya Studentov Starshikh Kursov, Nizhnii Novgorod State University, Nizhnii Novgorod, 2009 (In Russian)
[16] F. P. Vasil’ev, Metody Optimizatsii: V 2-kh. kn., MCCME, Moscow, 2011 (In Russian)
[17] A. G. Sukharev, A. V. Timokhov, V. V. Fedorov, Kurs Metodov Optimizatsii, Nauka Publ., Moscow, 1986 (In Russian) | MR
[18] D. -P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods, Academic Press, New York-London-Paris-San Diego-SanFrancisco-Sao Paulo-Sydney-Tokyo-Toronto, 1982 | MR | MR | Zbl