Maximal linked systems and ultrafilters: main representations and topological properties
Vestnik rossijskih universitetov. Matematika, Tome 25 (2020) no. 129, pp. 68-84

Voir la notice de l'article provenant de la source Math-Net.Ru

Questions connected with representation of the ultrafilter (UF) set for widely understood measurable space are investigated; this set is considered as a subspace of bitopological space of maximal linked systems (MLS) under equipment with topologies of Wallman and Stone types (measurable structure is defined as a $\pi$-system with “zero” and “unit”). Analogous representations connected with generalized variant of cohesion is considered also; in this variant, for corresponding set family, it is postulated the nonemptyness of intersection for finite subfamilies with power not exceeding given. Conditions of identification of UF and MLS (in the above-mentioned generalized sense) are investigated. Constructions reducing to bitopological spaces with points in the form of MLS and $n$-supercompactness property generalizing the “usual” supercompactness are considered. Finally, some characteristic properties of MLS and their corollaries connected with the MLS contraction to a smaller \linebreak$\pi$-system are being studied. The case of algebras of sets is selected separately.
Keywords: bitopological space, maximal linked system, ultrafilter.
@article{VTAMU_2020_25_129_a5,
     author = {A. G. Chentsov},
     title = {Maximal linked systems and ultrafilters: main representations and topological properties},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {68--84},
     publisher = {mathdoc},
     volume = {25},
     number = {129},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2020_25_129_a5/}
}
TY  - JOUR
AU  - A. G. Chentsov
TI  - Maximal linked systems and ultrafilters: main representations and topological properties
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2020
SP  - 68
EP  - 84
VL  - 25
IS  - 129
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2020_25_129_a5/
LA  - ru
ID  - VTAMU_2020_25_129_a5
ER  - 
%0 Journal Article
%A A. G. Chentsov
%T Maximal linked systems and ultrafilters: main representations and topological properties
%J Vestnik rossijskih universitetov. Matematika
%D 2020
%P 68-84
%V 25
%N 129
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTAMU_2020_25_129_a5/
%G ru
%F VTAMU_2020_25_129_a5
A. G. Chentsov. Maximal linked systems and ultrafilters: main representations and topological properties. Vestnik rossijskih universitetov. Matematika, Tome 25 (2020) no. 129, pp. 68-84. http://geodesic.mathdoc.fr/item/VTAMU_2020_25_129_a5/