Radon problems for hyperboloids
    
    
  
  
  
      
      
      
        
Vestnik rossijskih universitetov. Matematika, Tome 24 (2019) no. 128, pp. 432-449
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We offer a variant of Radon transforms for a pair $\mathcal{X}$ and $\mathcal{Y}$ of hyperboloids in ${\Bbb R}^3$ defined by $[x,x]=1$ and $[y,y]=-1, y_1\geqslant 1$, respectively, here $[x,y]=-x_1y_1+x_2y_2+x_3y_3$. For a kernel of these transforms we take $\delta([x,y])$, $\delta(t)$ being the Dirac delta function. We obtain two Radon transforms $\mathcal{D}(\mathcal{X}) \to C^{\infty}(\mathcal{Y})$ and $\mathcal{D}(\mathcal{Y})\to C^{\infty}(\mathcal{X})$. We describe kernels and images of these transforms. For that we decompose a sesqui-linear form with the kernel $\delta([x,y])$ into inner products of Fourier components.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
hyperboloids;  Radon  transform;  distributions;  representations; Poisson  and Fourier transforms.
                    
                  
                
                
                @article{VTAMU_2019_24_128_a6,
     author = {V. F. Molchanov},
     title = {Radon problems for hyperboloids},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {432--449},
     publisher = {mathdoc},
     volume = {24},
     number = {128},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2019_24_128_a6/}
}
                      
                      
                    V. F. Molchanov. Radon problems for hyperboloids. Vestnik rossijskih universitetov. Matematika, Tome 24 (2019) no. 128, pp. 432-449. http://geodesic.mathdoc.fr/item/VTAMU_2019_24_128_a6/
