@article{VTAMU_2019_24_128_a3,
author = {Z. T. Zhukovskaya and S. E. Zhukovskiy},
title = {On the existence of a continuously differentiable solution to the {Cauchy} problem for implicit differential equations},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {376--383},
year = {2019},
volume = {24},
number = {128},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2019_24_128_a3/}
}
TY - JOUR AU - Z. T. Zhukovskaya AU - S. E. Zhukovskiy TI - On the existence of a continuously differentiable solution to the Cauchy problem for implicit differential equations JO - Vestnik rossijskih universitetov. Matematika PY - 2019 SP - 376 EP - 383 VL - 24 IS - 128 UR - http://geodesic.mathdoc.fr/item/VTAMU_2019_24_128_a3/ LA - ru ID - VTAMU_2019_24_128_a3 ER -
%0 Journal Article %A Z. T. Zhukovskaya %A S. E. Zhukovskiy %T On the existence of a continuously differentiable solution to the Cauchy problem for implicit differential equations %J Vestnik rossijskih universitetov. Matematika %D 2019 %P 376-383 %V 24 %N 128 %U http://geodesic.mathdoc.fr/item/VTAMU_2019_24_128_a3/ %G ru %F VTAMU_2019_24_128_a3
Z. T. Zhukovskaya; S. E. Zhukovskiy. On the existence of a continuously differentiable solution to the Cauchy problem for implicit differential equations. Vestnik rossijskih universitetov. Matematika, Tome 24 (2019) no. 128, pp. 376-383. http://geodesic.mathdoc.fr/item/VTAMU_2019_24_128_a3/
[1] E. R. Avakov, A. V. Arutyunov, E. S. Zhukovskii, “Covering mappings and their applications to differential equations unsolved for the derivative”, Differential Equations, 45:5 (2009), 627–649 | DOI | MR | Zbl
[2] A. V. Arutyunov, E. S. Zhukovskiy, S. E. Zhukovskiy,, “Covering mappings and well-posedness of nonlinear Volterra equations”, Nonlinear Analysis. Theory, Methods and Applications, 75:3 (2012), 1026–1044 | DOI | MR | Zbl
[3] A. V. Arutyunov, S. E. Zhukovskiy, “Application of methods of ordinary differential equations to global inverse function theorems”, Differential Equations, 55:4 (2019), 437–448 | DOI | MR | Zbl
[4] P. Hartman, Ordinary Differential Equations, John Wiley Sons, New York, 1970 | MR
[5] A. F. Filippov, Introduction to the Theory of Differential Equations, KomKniga, Moscow, 2007 (in Russian)
[6] J. Ortega, W. Rheiboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 1970 | MR | Zbl