On the solvability and estimates of solutions of a perturbed inclusion in the space of continuous functions
Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 122, pp. 292-302
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we consider the assertion on the estimate of the closeness of the solution of a perturbed inclusion to a preassigned continuous function, and the proof of this assertion is given.
Keywords:
perturbed inclusion, estimation of the proximity of solutions to previously given functions.
@article{VTAMU_2018_23_122_a21,
author = {A. A. Grigorenko},
title = {On the solvability and estimates of solutions of a perturbed inclusion in the space of continuous functions},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {292--302},
publisher = {mathdoc},
volume = {23},
number = {122},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_122_a21/}
}
TY - JOUR AU - A. A. Grigorenko TI - On the solvability and estimates of solutions of a perturbed inclusion in the space of continuous functions JO - Vestnik rossijskih universitetov. Matematika PY - 2018 SP - 292 EP - 302 VL - 23 IS - 122 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTAMU_2018_23_122_a21/ LA - ru ID - VTAMU_2018_23_122_a21 ER -
%0 Journal Article %A A. A. Grigorenko %T On the solvability and estimates of solutions of a perturbed inclusion in the space of continuous functions %J Vestnik rossijskih universitetov. Matematika %D 2018 %P 292-302 %V 23 %N 122 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTAMU_2018_23_122_a21/ %G ru %F VTAMU_2018_23_122_a21
A. A. Grigorenko. On the solvability and estimates of solutions of a perturbed inclusion in the space of continuous functions. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 122, pp. 292-302. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_122_a21/