On the solvability and estimates of solutions of a perturbed inclusion in the space of continuous functions
Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 122, pp. 292-302

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider the assertion on the estimate of the closeness of the solution of a perturbed inclusion to a preassigned continuous function, and the proof of this assertion is given.
Keywords: perturbed inclusion, estimation of the proximity of solutions to previously given functions.
@article{VTAMU_2018_23_122_a21,
     author = {A. A. Grigorenko},
     title = {On the solvability and estimates of solutions of a perturbed inclusion in the space of continuous functions},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {292--302},
     publisher = {mathdoc},
     volume = {23},
     number = {122},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_122_a21/}
}
TY  - JOUR
AU  - A. A. Grigorenko
TI  - On the solvability and estimates of solutions of a perturbed inclusion in the space of continuous functions
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2018
SP  - 292
EP  - 302
VL  - 23
IS  - 122
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2018_23_122_a21/
LA  - ru
ID  - VTAMU_2018_23_122_a21
ER  - 
%0 Journal Article
%A A. A. Grigorenko
%T On the solvability and estimates of solutions of a perturbed inclusion in the space of continuous functions
%J Vestnik rossijskih universitetov. Matematika
%D 2018
%P 292-302
%V 23
%N 122
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTAMU_2018_23_122_a21/
%G ru
%F VTAMU_2018_23_122_a21
A. A. Grigorenko. On the solvability and estimates of solutions of a perturbed inclusion in the space of continuous functions. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 122, pp. 292-302. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_122_a21/