On semidiscretization methods for differential inclusions of fractional order
Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 122, pp. 125-130

Voir la notice de l'article provenant de la source Math-Net.Ru

The report provides semidiscretization diagram for semilinear differential inclusions of fractional order.
Keywords: fractional differential inclusion, semilinear differential inclusion, Cauchy problem, approximation, semidiscretization, fixed point, condensing map, measure of noncompactness.
@article{VTAMU_2018_23_122_a1,
     author = {M. I. Kamenskii and V. V. Obukhovskii and G. Petrosyan},
     title = {On semidiscretization methods for differential inclusions of fractional order},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {125--130},
     publisher = {mathdoc},
     volume = {23},
     number = {122},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_122_a1/}
}
TY  - JOUR
AU  - M. I. Kamenskii
AU  - V. V. Obukhovskii
AU  - G. Petrosyan
TI  - On semidiscretization methods for differential inclusions of fractional order
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2018
SP  - 125
EP  - 130
VL  - 23
IS  - 122
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2018_23_122_a1/
LA  - en
ID  - VTAMU_2018_23_122_a1
ER  - 
%0 Journal Article
%A M. I. Kamenskii
%A V. V. Obukhovskii
%A G. Petrosyan
%T On semidiscretization methods for differential inclusions of fractional order
%J Vestnik rossijskih universitetov. Matematika
%D 2018
%P 125-130
%V 23
%N 122
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTAMU_2018_23_122_a1/
%G en
%F VTAMU_2018_23_122_a1
M. I. Kamenskii; V. V. Obukhovskii; G. Petrosyan. On semidiscretization methods for differential inclusions of fractional order. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 122, pp. 125-130. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_122_a1/