On Arutyunov theorem of coincidence point for two mapping in metric spaces
Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 121, pp. 65-73

Voir la notice de l'article provenant de la source Math-Net.Ru

In the famous theorem of Arutyunov, it is asserted that the mappings $\psi,\varphi,$ acting from the complete metric space $(X, \rho_X)$ to the metric space $(Y, \rho_Y)$, one of which is $\alpha$-covering and the second is $\beta$-Lipschitz, $\alpha > \beta,$ have the coincidence point is the solution of the equation $\psi(x)=\varphi(x).$ We show that this assertion remains valid also in the case when the space $Y$ is not metric it is sufficient that the function $\rho_{Y}:Y^{2} \to \mathbb{R_{+}}$ satisfies only the axiom of identity. The function $\rho_{Y}$ may not be symmetric and does not correspond to the triangle inequality; moreover, it does not have to satisfy the $f$-triangle inequality (that is, it is possible that the space $Y$ is not even $f$-quasimetric).
Keywords: coincidence point, metric space, covering mapping, Lipschitz mapping.
@article{VTAMU_2018_23_121_a5,
     author = {W. Merchela},
     title = {On {Arutyunov} theorem of coincidence point for two mapping in metric spaces},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {65--73},
     publisher = {mathdoc},
     volume = {23},
     number = {121},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_121_a5/}
}
TY  - JOUR
AU  - W. Merchela
TI  - On Arutyunov theorem of coincidence point for two mapping in metric spaces
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2018
SP  - 65
EP  - 73
VL  - 23
IS  - 121
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2018_23_121_a5/
LA  - ru
ID  - VTAMU_2018_23_121_a5
ER  - 
%0 Journal Article
%A W. Merchela
%T On Arutyunov theorem of coincidence point for two mapping in metric spaces
%J Vestnik rossijskih universitetov. Matematika
%D 2018
%P 65-73
%V 23
%N 121
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTAMU_2018_23_121_a5/
%G ru
%F VTAMU_2018_23_121_a5
W. Merchela. On Arutyunov theorem of coincidence point for two mapping in metric spaces. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 121, pp. 65-73. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_121_a5/