On Arutyunov theorem of coincidence point for two mapping in metric spaces
    
    
  
  
  
      
      
      
        
Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 121, pp. 65-73
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In the famous theorem of Arutyunov,
it is asserted that the mappings $\psi,\varphi,$ acting from the complete metric space $(X, \rho_X)$ to the metric space $(Y, \rho_Y)$,
one of which is $\alpha$-covering and the second is $\beta$-Lipschitz,
$\alpha > \beta,$ have the coincidence point is the solution of the equation $\psi(x)=\varphi(x).$
We show that this assertion remains valid also in the case when the space $Y$ is not metric it is sufficient that the function $\rho_{Y}:Y^{2} \to \mathbb{R_{+}}$ satisfies only the axiom of identity.
The function $\rho_{Y}$ may not be symmetric and does not correspond to the triangle inequality; moreover,
it does not have to satisfy the $f$-triangle inequality (that is, it is possible that the space
$Y$ is not even $f$-quasimetric).
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
coincidence point, metric space, covering mapping, Lipschitz mapping.
                    
                  
                
                
                @article{VTAMU_2018_23_121_a5,
     author = {W. Merchela},
     title = {On {Arutyunov} theorem of coincidence point for two mapping in metric spaces},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {65--73},
     publisher = {mathdoc},
     volume = {23},
     number = {121},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_121_a5/}
}
                      
                      
                    TY - JOUR AU - W. Merchela TI - On Arutyunov theorem of coincidence point for two mapping in metric spaces JO - Vestnik rossijskih universitetov. Matematika PY - 2018 SP - 65 EP - 73 VL - 23 IS - 121 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTAMU_2018_23_121_a5/ LA - ru ID - VTAMU_2018_23_121_a5 ER -
W. Merchela. On Arutyunov theorem of coincidence point for two mapping in metric spaces. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 121, pp. 65-73. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_121_a5/
