On connection between continuous and discontinuous neural field models with microstructure I. General theory
    
    
  
  
  
      
      
      
        
Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 121, pp. 17-30
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We suggest a method allowing to investigate existence and the measure of proximity between the stationary solutions to continuous and discontinuous neural fields with microstructure. The present part involves a theorem on solvability of such equations based on topological degree theory, and a theorem on continuous dependence of the solutions under the transition from continuous to discontinuous activation function using compactness in a special topology.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
mathematical neuroscience, neural field models with microstructure, solvability, continuous dependence on parameters.
                    
                  
                
                
                @article{VTAMU_2018_23_121_a2,
     author = {E. O. Burlakov and M. A. Nasonkina},
     title = {On connection between continuous and discontinuous neural field models with microstructure {I.} {General} theory},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {17--30},
     publisher = {mathdoc},
     volume = {23},
     number = {121},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2018_23_121_a2/}
}
                      
                      
                    TY - JOUR AU - E. O. Burlakov AU - M. A. Nasonkina TI - On connection between continuous and discontinuous neural field models with microstructure I. General theory JO - Vestnik rossijskih universitetov. Matematika PY - 2018 SP - 17 EP - 30 VL - 23 IS - 121 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTAMU_2018_23_121_a2/ LA - ru ID - VTAMU_2018_23_121_a2 ER -
%0 Journal Article %A E. O. Burlakov %A M. A. Nasonkina %T On connection between continuous and discontinuous neural field models with microstructure I. General theory %J Vestnik rossijskih universitetov. Matematika %D 2018 %P 17-30 %V 23 %N 121 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTAMU_2018_23_121_a2/ %G ru %F VTAMU_2018_23_121_a2
E. O. Burlakov; M. A. Nasonkina. On connection between continuous and discontinuous neural field models with microstructure I. General theory. Vestnik rossijskih universitetov. Matematika, Tome 23 (2018) no. 121, pp. 17-30. http://geodesic.mathdoc.fr/item/VTAMU_2018_23_121_a2/
