About one quasi-metric space
Vestnik rossijskih universitetov. Matematika, Tome 22 (2017) no. 6, pp. 1285-1292 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The ${M}$-space $(X, \rho)$ is defined as a non-empty set $X$ with distance $\rho: X^2 \to \mathbb {R}_+$ satisfying the axiom of identity and the weakened triangle inequality. The ${M}$-space $(X, \rho)$ belongs to the class of $f$-quasi-metric spaces, and the map $\rho$ may not be $(c_1, c_2)$-quasi-metric for any values of $c_1, \, c_2;$ and $(c_1, c_2) $-quasi-metric space may not be an ${M}$-space. The properties of the ${M}$-space are investigated. An extension of the Krasnosel'skii theorem about a fixed point of a generally contracting map to the ${M}$-space is obtained.
Keywords: quasi-metric, triangle inequality, topology, fixed point, generalized contraction.
@article{VTAMU_2017_22_6_a8,
     author = {T. V. Zhukovskaya and E. S. Zhukovskiy},
     title = {About one quasi-metric space},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {1285--1292},
     year = {2017},
     volume = {22},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a8/}
}
TY  - JOUR
AU  - T. V. Zhukovskaya
AU  - E. S. Zhukovskiy
TI  - About one quasi-metric space
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2017
SP  - 1285
EP  - 1292
VL  - 22
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a8/
LA  - ru
ID  - VTAMU_2017_22_6_a8
ER  - 
%0 Journal Article
%A T. V. Zhukovskaya
%A E. S. Zhukovskiy
%T About one quasi-metric space
%J Vestnik rossijskih universitetov. Matematika
%D 2017
%P 1285-1292
%V 22
%N 6
%U http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a8/
%G ru
%F VTAMU_2017_22_6_a8
T. V. Zhukovskaya; E. S. Zhukovskiy. About one quasi-metric space. Vestnik rossijskih universitetov. Matematika, Tome 22 (2017) no. 6, pp. 1285-1292. http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a8/

[1] A. V. Arutyunov, A. V. Greshnov, “Theory of $(q1, q2)$-quasimetric spaces and coincidence points”, Doklady Mathematics, 94:1 (2016), 434–437 | DOI | MR | Zbl

[2] A. V. Arutyunov, A. V. Greshnov, L. V. Lokoutsievskii, K. V. Storozhuk, “Topological and geometrical properties of spaces with symmetric and nonsymmetric $f$-quasimetrics”, Topology and its Applications, 221 (2017), 178–194 | DOI | MR | Zbl

[3] S. Banach, “Sur les operations dans les ensembles abstraits et leur application aux equations integrales”, Fundamenta Mathematicae, 3 (1922), 133–181 | DOI | MR | Zbl

[4] M. A. Krasnosel'skiy, G. M. Vayniko, P. P. Zabreyko, Ya. B. Rutitskiy, V. Ya. Stetsenko, Priblizhennoe reshenie operatornykh uravneniy, Nauka, Moscow, 1969, 456 pp. (In Russian) | MR