@article{VTAMU_2017_22_6_a8,
author = {T. V. Zhukovskaya and E. S. Zhukovskiy},
title = {About one quasi-metric space},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {1285--1292},
year = {2017},
volume = {22},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a8/}
}
T. V. Zhukovskaya; E. S. Zhukovskiy. About one quasi-metric space. Vestnik rossijskih universitetov. Matematika, Tome 22 (2017) no. 6, pp. 1285-1292. http://geodesic.mathdoc.fr/item/VTAMU_2017_22_6_a8/
[1] A. V. Arutyunov, A. V. Greshnov, “Theory of $(q1, q2)$-quasimetric spaces and coincidence points”, Doklady Mathematics, 94:1 (2016), 434–437 | DOI | MR | Zbl
[2] A. V. Arutyunov, A. V. Greshnov, L. V. Lokoutsievskii, K. V. Storozhuk, “Topological and geometrical properties of spaces with symmetric and nonsymmetric $f$-quasimetrics”, Topology and its Applications, 221 (2017), 178–194 | DOI | MR | Zbl
[3] S. Banach, “Sur les operations dans les ensembles abstraits et leur application aux equations integrales”, Fundamenta Mathematicae, 3 (1922), 133–181 | DOI | MR | Zbl
[4] M. A. Krasnosel'skiy, G. M. Vayniko, P. P. Zabreyko, Ya. B. Rutitskiy, V. Ya. Stetsenko, Priblizhennoe reshenie operatornykh uravneniy, Nauka, Moscow, 1969, 456 pp. (In Russian) | MR