Combining dynamic and static host intrusion detection features using variational long short-term memory recurrent autoencoder
    
    
  
  
  
      
      
      
        
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 20 (2024) no. 1, pp. 34-51
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Despite the many advantages offered by Host Intrusion Detection Systems (HIDS), they are rarely adopted in mainstream cybersecurity strategies. Unlike Network Intrusion Detection Systems, a HIDS is the last layer of defence between potential attacks and the underlying OSs. One of the main reasons behind this is its poor capabilities to adequately protect against zero-day attacks. With the rising number of zero-day exploits and related attacks, this is an increasingly imperative requirement for a modern HIDS. In this paper variational long short-term memory — recurrent autoencoder approach which improves zero-day attack detection is proposed. We have practically implemented our model using TensorFlow and evaluated its performance using benchmark ADFA-LD and UNM datasets. We have also compared the results against those from notable publications in the area.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
HIDS, anomaly detection, deep learning.
Mots-clés : variational autoencoder
                    
                  
                
                
                Mots-clés : variational autoencoder
@article{VSPUI_2024_20_1_a3,
     author = {V. H. Nguyen and N. N. Tran},
     title = {Combining dynamic and static host intrusion detection features using variational long short-term memory recurrent autoencoder},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {34--51},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2024_20_1_a3/}
}
                      
                      
                    TY - JOUR AU - V. H. Nguyen AU - N. N. Tran TI - Combining dynamic and static host intrusion detection features using variational long short-term memory recurrent autoencoder JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2024 SP - 34 EP - 51 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSPUI_2024_20_1_a3/ LA - en ID - VSPUI_2024_20_1_a3 ER -
%0 Journal Article %A V. H. Nguyen %A N. N. Tran %T Combining dynamic and static host intrusion detection features using variational long short-term memory recurrent autoencoder %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2024 %P 34-51 %V 20 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSPUI_2024_20_1_a3/ %G en %F VSPUI_2024_20_1_a3
V. H. Nguyen; N. N. Tran. Combining dynamic and static host intrusion detection features using variational long short-term memory recurrent autoencoder. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 20 (2024) no. 1, pp. 34-51. http://geodesic.mathdoc.fr/item/VSPUI_2024_20_1_a3/
