Combining dynamic and static host intrusion detection features using variational long short-term memory recurrent autoencoder
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 20 (2024) no. 1, pp. 34-51

Voir la notice de l'article provenant de la source Math-Net.Ru

Despite the many advantages offered by Host Intrusion Detection Systems (HIDS), they are rarely adopted in mainstream cybersecurity strategies. Unlike Network Intrusion Detection Systems, a HIDS is the last layer of defence between potential attacks and the underlying OSs. One of the main reasons behind this is its poor capabilities to adequately protect against zero-day attacks. With the rising number of zero-day exploits and related attacks, this is an increasingly imperative requirement for a modern HIDS. In this paper variational long short-term memory — recurrent autoencoder approach which improves zero-day attack detection is proposed. We have practically implemented our model using TensorFlow and evaluated its performance using benchmark ADFA-LD and UNM datasets. We have also compared the results against those from notable publications in the area.
Keywords: HIDS, anomaly detection, deep learning.
Mots-clés : variational autoencoder
@article{VSPUI_2024_20_1_a3,
     author = {V. H. Nguyen and N. N. Tran},
     title = {Combining dynamic and static host intrusion detection features using variational long short-term memory recurrent autoencoder},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {34--51},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2024_20_1_a3/}
}
TY  - JOUR
AU  - V. H. Nguyen
AU  - N. N. Tran
TI  - Combining dynamic and static host intrusion detection features using variational long short-term memory recurrent autoencoder
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2024
SP  - 34
EP  - 51
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2024_20_1_a3/
LA  - en
ID  - VSPUI_2024_20_1_a3
ER  - 
%0 Journal Article
%A V. H. Nguyen
%A N. N. Tran
%T Combining dynamic and static host intrusion detection features using variational long short-term memory recurrent autoencoder
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2024
%P 34-51
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSPUI_2024_20_1_a3/
%G en
%F VSPUI_2024_20_1_a3
V. H. Nguyen; N. N. Tran. Combining dynamic and static host intrusion detection features using variational long short-term memory recurrent autoencoder. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 20 (2024) no. 1, pp. 34-51. http://geodesic.mathdoc.fr/item/VSPUI_2024_20_1_a3/