Bending of a clamped thin isotropic plate by the Kantorovich method using special polynomials
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 19 (2023) no. 4, pp. 423-442 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of bending a thin isotropic rectangular plate clamped on all four sides under the action of a normal load uniformly distributed over its surface is considered. An analytical solution of the boundary value problem for the resolving differential equation with respect to the normal deflection of the plate is obtained by the method of L. V. Kantorovich using special-type polynomials satisfying homogeneous boundary conditions. A feature of these polynomials is the so-called ‘‘quasi-orthogonality" property of the first and second derivatives, which leads to the splitting of the system of ordinary differential equations of the L. V. Kantorovich method into separate ordinary differential equations that are easily solved analytically. However, this property of polynomials is only approximately fulfilled. Two solutions are compared: an analytical one under the assumption of ‘‘quasi-orthogonality" of the first and second derivatives of polynomials and a numerical-analytical one without this assumption. The stress-strain state in the neighborhoods of corner points has been studied. It is shown that the moments and shear forces tend to zero when approaching the corners of the plate, as well as a double change in the sign of the shear force on the edge of the plate in the neighborhoods of the corner points.
Keywords: isotropic plate, bending of a thin isotropic plate, numerical-analytical methods, clamped plate, L. V. Kantorovich method, Jacobi polynomials.
Mots-clés : orthogonal polynomials
@article{VSPUI_2023_19_4_a0,
     author = {D. P. Goloskokov and A. V. Matrosov and I. V. Olemskoy},
     title = {Bending of a clamped thin isotropic plate by the {Kantorovich} method using special polynomials},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {423--442},
     year = {2023},
     volume = {19},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2023_19_4_a0/}
}
TY  - JOUR
AU  - D. P. Goloskokov
AU  - A. V. Matrosov
AU  - I. V. Olemskoy
TI  - Bending of a clamped thin isotropic plate by the Kantorovich method using special polynomials
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2023
SP  - 423
EP  - 442
VL  - 19
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2023_19_4_a0/
LA  - ru
ID  - VSPUI_2023_19_4_a0
ER  - 
%0 Journal Article
%A D. P. Goloskokov
%A A. V. Matrosov
%A I. V. Olemskoy
%T Bending of a clamped thin isotropic plate by the Kantorovich method using special polynomials
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2023
%P 423-442
%V 19
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2023_19_4_a0/
%G ru
%F VSPUI_2023_19_4_a0
D. P. Goloskokov; A. V. Matrosov; I. V. Olemskoy. Bending of a clamped thin isotropic plate by the Kantorovich method using special polynomials. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 19 (2023) no. 4, pp. 423-442. http://geodesic.mathdoc.fr/item/VSPUI_2023_19_4_a0/

[1] Lurie S. A., Vasiliev V. V., The biharmonic problem in the theory of elasticity, Gordon and Breach Science Publ, London, 1995, 276 pp. | MR

[2] Meleshko V. V., “Selected topics in the history of the two-dimensional biharmonic problem”, Appl. Mech. Rev., 56:1 (2003), 33–85 | DOI | MR

[3] Goloskokov D. P., Matrosov A. V., “Bending of clamped orthotropic thin plates: polynomial solution”, Mathematics and Mechanics of Solids, 27:11 (2022), 2498–2509 | DOI | MR

[4] Goloskokov D. P., Goloskokov P. G., The method of polynomials in the problems of the theory of thin plates, St. Petersburg State University for water communication Press, St. Petersburg, 2008, 251 pp. (In Russian)

[5] “The use of special-type polynomials for calculating the vibrations of a rectangular plate”, Journal of the University of Water Communications, 1:1 (2009), 185–188 (In Russian)

[6] Goloskokov D. P., “Application of special-type polynomials in the problems of oscillations of rectangular and sectoral plates”, Bulletin of the Tatar State Humanitarian Pedagogical University, 3:21 (2010), 22–32 (In Russian)

[7] Goloskokov D. P., “Vibrations of sectoral plates”, Bulletin of the Engineering. Series Technical Sciences, 8:27 (2008), 156–161 (In Russian)

[8] Hassan A. H. A., Kurgan N., Can N., “The correct derivation of the buckling equations of the shear-deformable FGM plates for the extended Kantorovich method”, Meccanica, 57:2 (2022), 441–456 | DOI | MR | Zbl

[9] Mamandi A., “Bending deflection and stress analyses in a thin functionally graded material skew plate with different boundary conditions on the Winkler — Pasternak elastic foundation and under combined in-plane and uniform lateral loads using the extended Kantorovich method”, Proceedings of the Institution of Mechanical Engineers. Pt C: Journal of Mechanical Engineering Science, 236:1 (2022), 330–353 | DOI

[10] Hassan A. H. A., Kurgan N., “Bending analysis of thin FGM skew plate resting on Winkler elastic foundation using multi-term extended Kantorovich method”, Engineering Science and Technology, 23:4 (2020), 788–800

[11] Singh A., Kumari P., “Three-dimensional free vibration analysis of composite FGM rectangular plates with in-plane heterogeneity: An EKM solution”, International Journal of Mechanical Sciences, 180:5 (2020), 1–6

[12] Fallah A., Kargarnovin M. H., Aghdam M. M., “Free vibration analysis of symmetrically laminated fully clamped skew plates using extended Kantorovich method”, Key Engineering Materials, 471–472 (2011), 739–744 | DOI

[13] Kargarnovin M. H., Joodaky A., “Bending analysis of thin skew plates using extended Kantorovich method”, ASME 10$^{th}$ Biennial Conference on Engineering Systems Design and Analysis, ESDA2010, v. 2, 2010, 39–44

[14] Shufrin I., Rabinovitch O., Eisenberger M., “A semi-analytical approach for the geometrically nonlinear analysis of trapezoidal plates”, International Journal of Mechanical Sciences, 52:12 (2010), 1588–1596 | DOI

[15] Farag A. M., Ashour A. S., “Free vibration of orthotropic skew plates”, Journal of Vibration and Acoustics, Transactions of the ASME, 122:3 (2010), 313–317 | DOI

[16] Hassan A. H. A., Kurgan N., “Buckling of thin skew isotropic plate resting on Pasternak elastic foundation using extended Kantorovich method”, Heliyon, 6:6 (2020), 04236 | MR

[17] Rajabi J., Mohammadimehr M., “Bending analysis of a micro sandwich skew plate using extended Kantorovich method based on Eshelby — Mori — Tanaka approach”, Computers and Concrete, 23:5 (2019), 361–376

[18] Lopatin A. V., Morozov E. V., “Buckling of a rectangular composite orthotropic plate with two parallel free edges and the other two edges clamped and subjected to uniaxial compressive distributed load”, European Journal of Mechanics, A/Solids, 81 (2020), 103960 | DOI | MR | Zbl

[19] Onyia M. E., Rowland-Lato E. O., Ike C. C., “Galerkin — Kantorovich method for the elastic buckling analysis of thin rectangular SCSC plates”, International Journal of Engineering Research and Technology, 13:4 (2020), 613–619 | DOI

[20] Singh A., Kumari P., Hazarika R., “Analytical solution for bending analysis of axially functionally graded angle-ply flat panels”, Mathematical Problems in Engineering, 2018, 2597484 | MR | Zbl

[21] Ruocco E., Mallardo V., Minutolo V., Di Giacinto D., “Analytical solution for buckling of Mindlin plates subjected to arbitrary boundary conditions”, Applied Mathematical Modelling, 50 (2017), 497–508 | DOI | MR | Zbl

[22] Kumari P., Shakya A. K., “Two-dimensional solution of piezoelectric plate subjected to arbitrary boundary conditions using extended Kantorovich method”, Procedia Engineering, 173 (2017), 1523–1530 | DOI

[23] Singhatanadgid P., Jommalai P., “Buckling analysis of laminated plates using the extended Kantorovich method and a system of first-order differential equations”, Journal of Mechanical Science and Technology, 30:5 (2016), 2121–2131 | DOI

[24] Lopatin A. V., Morozov E. V., “Approximate buckling analysis of the CCFF orthotropic plates subjected to in-plane bending”, International Journal of Mechanical Sciences, 85 (2014), 38–44 | DOI

[25] Singhatanadgid P., Singhanart T., “The Kantorovich method applied to bending, buckling, vibration, and 3D stress analyses of plates: A literature review”, Mechanics of Advanced Materials and Structures, 26:2 (2019), 170–188 | DOI

[26] Timoshenko S. P., Woinowsky-Krieger S., Theory of plates and shells, 2$^{\rm nd}$ ed, McGraw-Hill Publ., New York, 1987, 580 pp. | MR

[27] Meleshko V. V.,Gomilko A. M., Gourjii A. A., “Normal reactions in a clamped elastic rectangular plate”, Journal of Engineering Mathematics, 40 (2001), 377–398 | DOI | MR | Zbl

[28] Alcybeev G. O., Goloskokov D. P., Matrosov A. V., “The superposition method in the problem of bending of a thin isotropic plate clamped along the contour”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 18:3 (2022), 347–364 | DOI | MR