Optimal control of thermal and wave processes in composite materials
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 19 (2023) no. 3, pp. 403-418 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper indicates the approach and the corresponding him method of penalty functions for analyzing the problems of optimal control of thermal and wave processes in structural elements made of composite materials (composites). An object that is quite common in the industrial sphere, the structure of which is a set of layers (phases) of unidirectional composites — layered composites, is considered. When solving problems related to the analysis and description of the states of composites, quantitative characteristics of layers that are not functions of the coordinates of the points of the medium are usually used in order not to solve the corresponding problems for an inhomogeneous medium. Such functions are elements of Sobolev spaces, first of all, functions summable with a square. The convenience lies in the fact that when finding the conditions for solvability of initial-boundary value problems of various types (in most cases, such problems are the basis of mathematical models of many physical processes), it is possible to reduce to operator-difference systems, for which it is easy to construct a priori estimates of weak solutions. The next step after establishing the weak solvability of the initial-boundary value problem of the thermal or wave process in composites is the formulation and solution of the problem of optimal control of these processes. The proposed method of penalty functions on the example of solving such problems is a general method. It is applicable with slight modifications also not only in the case of elliptic, parabolic and other problems (including nonlinear) for scalar functions, but also for vector functions. An example of the latter is the Navier — Stokes system, widely used in the description of network-like hydrodynamic processes, considered in Sobolev spaces, the elements of which are functions with carriers on $n$-dimensional network-like domains, $n\geq 2$.
Keywords: composite materials, layered region, initial-boundary value problem, weak solvability, optimal control, method of penalty functions.
@article{VSPUI_2023_19_3_a7,
     author = {A. P. Zhabko and V. V. Karelin and V. V. Provotorov and S. M. Sergeev},
     title = {Optimal control of thermal and wave processes in composite materials},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {403--418},
     year = {2023},
     volume = {19},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2023_19_3_a7/}
}
TY  - JOUR
AU  - A. P. Zhabko
AU  - V. V. Karelin
AU  - V. V. Provotorov
AU  - S. M. Sergeev
TI  - Optimal control of thermal and wave processes in composite materials
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2023
SP  - 403
EP  - 418
VL  - 19
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2023_19_3_a7/
LA  - ru
ID  - VSPUI_2023_19_3_a7
ER  - 
%0 Journal Article
%A A. P. Zhabko
%A V. V. Karelin
%A V. V. Provotorov
%A S. M. Sergeev
%T Optimal control of thermal and wave processes in composite materials
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2023
%P 403-418
%V 19
%N 3
%U http://geodesic.mathdoc.fr/item/VSPUI_2023_19_3_a7/
%G ru
%F VSPUI_2023_19_3_a7
A. P. Zhabko; V. V. Karelin; V. V. Provotorov; S. M. Sergeev. Optimal control of thermal and wave processes in composite materials. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 19 (2023) no. 3, pp. 403-418. http://geodesic.mathdoc.fr/item/VSPUI_2023_19_3_a7/

[1] Artemov M. A., Baranovskii E. S., Zhabko A. P., Provotorov V. V., “On a 3D model of non-isothermal flows in a pipeline network”, Journal of Physics. Conference Series, 1203 (2019), 012094 | DOI

[2] Zhabko N. A., Karelin V. V., Provotorov V. V., Sergeev S. M., “The method of penalty functions in the analysis of optimal control problems of Navier — Stokes evolutionary systems with a spatial variable in a network-like domain”, Vestnik Sankt-Peterburgskogo universiteta. Prikladnaya matematika. Informatika. Protsessy upravleniya, 19:2 (2023), 162–175 | DOI | MR

[3] Baranovskii E. S., Provotorov V. V., Artemov M. A., Zhabko A. P., “Non-isothermal creeping flows in a pipeline network: existence results”, Symmetry, 13 (2021), 1300 | DOI

[4] Zhabko A. P., Provotorov V. V., Shindyapin A. I., “Optimal control of a differential-difference parabolic system with distributed parameters on the graph”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 17:4 (2021), 433–448 | DOI | MR

[5] Lax P. D., Milgram N., “Parabolie equations. Contributions to the theory of partial differential”, Ann. Math. Studies, 33 (1954), 167–190 | MR | Zbl

[6] Provotorov V. V., “Construction of boundary controls in the problem of damping vibrations of a system of $M$ strings”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 6:1 (2012), 60–69 (In Russian)

[7] Podvalny S. L., Provotorov V. V., “Determining the starting function in the task of observing the parabolic system with distributed parameters on the graph”, Vestnik of Voronezh State Technical University, 10:6 (2014), 29–35 (In Russian)

[8] Lions J.-L., Madgenes E., Nonhomogeneous boundary problems and their applications, Mir Publ, M., 1971, 367 pp. (In Russian)

[9] Lions J.-L., Controle optimal de sistemes gouvernes par des eqations aux derivees partielles, Mir Publ, M., 1973, 414 pp. (In Russian)

[10] Samarskii A. A., Theory of difference schemes, Nauka Publ, M., 1973, 655 pp. (In Russian)

[11] Provotorov V. V., Native functions of boundary value problems on graphs and applications, Nauchnaya kniga Publ, Voronezh, 2008, 247 pp. (In Russian)

[12] Demyanov V. F., Giannessi F., Karelin V. V., “Optimal control problems via exact penalty functions”, Journal of Global Optimization, 12 (1998), 127–139 | DOI | MR

[13] Karelin V. V., “Exact fines in the problem of estimating the coordinates of a dynamical system under uncertainty”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 2011, no. 4, 40–44 (In Russian)

[14] Demyanov V. F., Karelin V. V., “On a minimax approach to the problem of identification of dynamic systems in the presence of uncertainty”, Advances in optimization (Lambrecht, 1991), Lecture Notes in Econom. and Math. Systems, 382, Springer, Berlin, 1992, 515–517 | DOI | MR

[15] Polyakova L., Karelin V., “Exact penalty functions method for solving problems of nondifferentiable optimization”, Cybernetics and Physics. SmartFly. LLC, 3:3 (2014), 124–129 | MR

[16] Karelin V. V., Fominih A. V., “Exact penalties in the problem of constructing the optimal solution of differential inclusion”, Proceedings of the Institute of Mathematics and Mechanics URO RAS, 21, no. 3, 2015, 153–163 (In Russian)

[17] Zhabko A. P., Nurtazina K. B., Provotorov V. V., “About one approach to solving the inverse problem for parabolic equation”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 15:3 (2019), 322–335 | DOI | MR