@article{VSPUI_2023_19_3_a7,
author = {A. P. Zhabko and V. V. Karelin and V. V. Provotorov and S. M. Sergeev},
title = {Optimal control of thermal and wave processes in composite materials},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {403--418},
year = {2023},
volume = {19},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2023_19_3_a7/}
}
TY - JOUR AU - A. P. Zhabko AU - V. V. Karelin AU - V. V. Provotorov AU - S. M. Sergeev TI - Optimal control of thermal and wave processes in composite materials JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2023 SP - 403 EP - 418 VL - 19 IS - 3 UR - http://geodesic.mathdoc.fr/item/VSPUI_2023_19_3_a7/ LA - ru ID - VSPUI_2023_19_3_a7 ER -
%0 Journal Article %A A. P. Zhabko %A V. V. Karelin %A V. V. Provotorov %A S. M. Sergeev %T Optimal control of thermal and wave processes in composite materials %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2023 %P 403-418 %V 19 %N 3 %U http://geodesic.mathdoc.fr/item/VSPUI_2023_19_3_a7/ %G ru %F VSPUI_2023_19_3_a7
A. P. Zhabko; V. V. Karelin; V. V. Provotorov; S. M. Sergeev. Optimal control of thermal and wave processes in composite materials. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 19 (2023) no. 3, pp. 403-418. http://geodesic.mathdoc.fr/item/VSPUI_2023_19_3_a7/
[1] Artemov M. A., Baranovskii E. S., Zhabko A. P., Provotorov V. V., “On a 3D model of non-isothermal flows in a pipeline network”, Journal of Physics. Conference Series, 1203 (2019), 012094 | DOI
[2] Zhabko N. A., Karelin V. V., Provotorov V. V., Sergeev S. M., “The method of penalty functions in the analysis of optimal control problems of Navier — Stokes evolutionary systems with a spatial variable in a network-like domain”, Vestnik Sankt-Peterburgskogo universiteta. Prikladnaya matematika. Informatika. Protsessy upravleniya, 19:2 (2023), 162–175 | DOI | MR
[3] Baranovskii E. S., Provotorov V. V., Artemov M. A., Zhabko A. P., “Non-isothermal creeping flows in a pipeline network: existence results”, Symmetry, 13 (2021), 1300 | DOI
[4] Zhabko A. P., Provotorov V. V., Shindyapin A. I., “Optimal control of a differential-difference parabolic system with distributed parameters on the graph”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 17:4 (2021), 433–448 | DOI | MR
[5] Lax P. D., Milgram N., “Parabolie equations. Contributions to the theory of partial differential”, Ann. Math. Studies, 33 (1954), 167–190 | MR | Zbl
[6] Provotorov V. V., “Construction of boundary controls in the problem of damping vibrations of a system of $M$ strings”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 6:1 (2012), 60–69 (In Russian)
[7] Podvalny S. L., Provotorov V. V., “Determining the starting function in the task of observing the parabolic system with distributed parameters on the graph”, Vestnik of Voronezh State Technical University, 10:6 (2014), 29–35 (In Russian)
[8] Lions J.-L., Madgenes E., Nonhomogeneous boundary problems and their applications, Mir Publ, M., 1971, 367 pp. (In Russian)
[9] Lions J.-L., Controle optimal de sistemes gouvernes par des eqations aux derivees partielles, Mir Publ, M., 1973, 414 pp. (In Russian)
[10] Samarskii A. A., Theory of difference schemes, Nauka Publ, M., 1973, 655 pp. (In Russian)
[11] Provotorov V. V., Native functions of boundary value problems on graphs and applications, Nauchnaya kniga Publ, Voronezh, 2008, 247 pp. (In Russian)
[12] Demyanov V. F., Giannessi F., Karelin V. V., “Optimal control problems via exact penalty functions”, Journal of Global Optimization, 12 (1998), 127–139 | DOI | MR
[13] Karelin V. V., “Exact fines in the problem of estimating the coordinates of a dynamical system under uncertainty”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 2011, no. 4, 40–44 (In Russian)
[14] Demyanov V. F., Karelin V. V., “On a minimax approach to the problem of identification of dynamic systems in the presence of uncertainty”, Advances in optimization (Lambrecht, 1991), Lecture Notes in Econom. and Math. Systems, 382, Springer, Berlin, 1992, 515–517 | DOI | MR
[15] Polyakova L., Karelin V., “Exact penalty functions method for solving problems of nondifferentiable optimization”, Cybernetics and Physics. SmartFly. LLC, 3:3 (2014), 124–129 | MR
[16] Karelin V. V., Fominih A. V., “Exact penalties in the problem of constructing the optimal solution of differential inclusion”, Proceedings of the Institute of Mathematics and Mechanics URO RAS, 21, no. 3, 2015, 153–163 (In Russian)
[17] Zhabko A. P., Nurtazina K. B., Provotorov V. V., “About one approach to solving the inverse problem for parabolic equation”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 15:3 (2019), 322–335 | DOI | MR