An epidemic model of malaria without and with vaccination. Pt 2. A model of malaria with vaccination
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 18 (2022) no. 4, pp. 555-567 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article proposes a mathematical model of a malaria epidemic with vaccination in a population of people (hosts), where the disease is transmitted by a mosquito (carrier). The malaria transmission model is defined by a system of ordinary differential equations, which takes into account the level of vaccination in the population. The host population at any given time is divided into four subgroups: susceptible, vector-bitten, infected, and recovered. Sufficient conditions for the stability of a disease-free equilibrium and endemic equilibrium are obtained using the theory of Lyapunov functions. Numerical modeling represents the influence of parameters (including the vaccination level of the population) on the disease spread.
Keywords: epidemic model, SEIR model, endemic equilibrium.
Mots-clés : malaria, vaccination
@article{VSPUI_2022_18_4_a9,
     author = {S. M. Ndiaye and E. M. Parilina},
     title = {An epidemic model of malaria without and with vaccination. {Pt} 2. {A} model of malaria with vaccination},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {555--567},
     year = {2022},
     volume = {18},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2022_18_4_a9/}
}
TY  - JOUR
AU  - S. M. Ndiaye
AU  - E. M. Parilina
TI  - An epidemic model of malaria without and with vaccination. Pt 2. A model of malaria with vaccination
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2022
SP  - 555
EP  - 567
VL  - 18
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2022_18_4_a9/
LA  - ru
ID  - VSPUI_2022_18_4_a9
ER  - 
%0 Journal Article
%A S. M. Ndiaye
%A E. M. Parilina
%T An epidemic model of malaria without and with vaccination. Pt 2. A model of malaria with vaccination
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2022
%P 555-567
%V 18
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2022_18_4_a9/
%G ru
%F VSPUI_2022_18_4_a9
S. M. Ndiaye; E. M. Parilina. An epidemic model of malaria without and with vaccination. Pt 2. A model of malaria with vaccination. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 18 (2022) no. 4, pp. 555-567. http://geodesic.mathdoc.fr/item/VSPUI_2022_18_4_a9/

[1] Sokolov S. V., Sokolova A. L., “HIV incidence in Russia: SIR epidemic model-based analysis”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 15:4 (2019), 616–623 | DOI | MR

[2] Smith D. L., Battle K. E., Hay S. I., Barker C. M., Scott T. W., McKenzie F. E., “Ross, Macdonald, and a theory for the dynamics and control of mosquito-transmitted pathogens”, PLoS Pathog, 8:4 (2012), e1002588 | DOI

[3] MacDonald G., “Epidemiological basis of malaria control”, Bull. World Health Organ, 15:3–5 (1956), 613–626

[4] Zakharov V. V., Balykina Yu. E., “Predicting the dynamics of the coronavirus (COVID-19) epidemic based on the case-based reasoning approach”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 16:3 (2020), 249–259 (In Russian) | DOI

[5] Feng Z., Hernandez V., “Competitive exclusion in a vector-host model for the dengue fever”, Math. Biol., 1997, 523–544 | DOI | MR

[6] Qiu Z., “Dynamical behavior of a vector-host epidemic model with demographic structure”, Computers $\$ Mathematics with Applications, 56:12 (2008), 3118–3129 | DOI | MR

[7] Sirbu A., Lorento V., Servedio V., Tria F., “Opinion dynamics: models, extensions and external effects”, Physics and Society, 5 (2016), 363–401

[8] Bushman M., Antia R., Udhayakumar V., de Roode J. C., “Within-host competition can delay evolution of drug resistance in malaria”, PLoS Biol, 16:8 (2018), e2005712 | DOI

[9] Turner A., Jung C., Tan P., Gotika S., Mago V., “A comprehensive model of spread of malaria in humans and mosquitos”, SoutheastCon, 2015, 1–6 | DOI

[10] Hong H., Wang N., Yang J., “Implications of stochastic transmission rates for managing pandemic risks”, Rev. Financ. Stud., 2021, Feb. 9, hhaa132 | DOI

[11] Gómez-Hernández E. A., Ibargüen-Mondragón E., “A two patch model for the population dynamics of mosquito-borne diseases”, J. Phys.: Conference Series, 1408:1 (2019), 012002 | DOI

[12] Kamgang J. C., Thron C. P., “Analysis of malaria control measures' effectiveness using multistage vector model”, Bull. Math. Biol., 81 (2019), 4366–4411 | DOI | MR

[13] Aleksandrov A. Yu., “Permanence conditions for models of population dynamics with switches and delay”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 16:2 (2020), 88–99 (In Russian) | DOI | MR

[14] Chang S. L., Piraveenan M., Pattison P., Prokopenko M., “Game theoretic modelling of infectious disease dynamics and intervention methods: a review”, Journal of Biological Dynamics, 14:1 (2020), 57–89 | DOI | MR

[15] Cai L., Tuncer N., Martcheva M., “How does within-host dynamics affect population-level dynamics? Insights from an immuno-epidemiological model of malaria”, Mathematical Methods in the Applied Sciences, 40:18 (2017), 6424–6450 | DOI | MR

[16] Maliki O., Romanus N., Onyemegbulem B., “A mathematical modelling of the effect of treatment in the control of malaria in a population with infected immigrants”, Applied Mathematics, 9 (2018), 1238–1257 | DOI

[17] Baygents G., Bani-Yaghoub M., “A mathematical model to analyze spread of hemorrhagic disease in white-tailed deer population”, Journal of Applied Mathematics and Physics, 5:11 (2017), 2262–2282 | DOI

[18] Wiwanitkit V., “Unusual mode of transmission of dengue”, Journal of Infect. Dev. Ctries, 4 (2009), 051–054 | DOI

[19] Ndiaye S. M., Parilina E. M., “An epidemic model of malaria without and with vaccination. Pt 1. A model of malaria without vaccination”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 18:2 (2022), 263–277 (In Russian) | DOI | MR

[20] Ndiaye S. M., Modélisation dún syst$\grave {\rm e}$me de p$\hat {\rm e}$cherie avec maladie, Bachelor Thesis, Supervisé par M. Lam, F. Mansal, Université Cheikh Anta Diop de Dakar, Dakar, 2017, 3–10

[21] Aldila D., Seno H. A., “Population dynamics model of mosquito-borne disease transmission, focusing on mosquitoes' biased distribution and mosquito repellent use”, Bull. Math. Biol, 81 (2019), 4977–5008 | DOI | MR

[22] Lipsitch M., Cohen T., Cooper B., Robins J. M., Ma S., James L., Gopalakrishna G., Chew S. K., Tan C. C., Samore M. H., Fisman D., Murray M., “Transmission dynamics and control of severe acute respiratory syndrome”, Science, 300 (2003), 1966–1970 | DOI

[23] Britton T., “Stochastic epidemic models: A survey”, Mathematical Biosciences, 225:1 (2010), 24–35 | DOI | MR

[24] Diekmann O., Heesterbeek A. P., Roberts M. G., “The construction of next-generation matrices for compartmental epidemic models”, J. R. Soc. Interface, 7 (2010), 873–885 | DOI

[25] Van den Driessche P., “Reproduction numbers of infectious disease models”, Infect. Dis. Model., 2 (2017), 288–303

[26] Jones J. H., Notes on R0, No 323, Department of Anthropological Sciences, Stanford, CA, USA, 2007, 19 pp.