An epidemic model of malaria without and with vaccination. Pt 2. A model of malaria with vaccination
    
    
  
  
  
      
      
      
        
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 18 (2022) no. 4, pp. 555-567
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The article proposes a mathematical model of a malaria epidemic with vaccination in a population of people (hosts), where the disease is transmitted by a mosquito (carrier). The malaria transmission model is defined by a system of ordinary differential equations, which takes into account the level of vaccination in the population. The host population at any given time is divided into four subgroups: susceptible, vector-bitten, infected, and recovered. Sufficient conditions for the stability of a disease-free equilibrium and endemic equilibrium are obtained using the theory of Lyapunov functions. Numerical modeling represents the influence of parameters (including the vaccination level of the population) on the disease spread.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
epidemic model, SEIR model, endemic equilibrium.
Mots-clés : malaria, vaccination
                    
                  
                
                
                Mots-clés : malaria, vaccination
@article{VSPUI_2022_18_4_a9,
     author = {S. M. Ndiaye and E. M. Parilina},
     title = {An epidemic model of malaria without and with vaccination. {Pt} 2. {A} model of malaria with vaccination},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {555--567},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2022_18_4_a9/}
}
                      
                      
                    TY - JOUR AU - S. M. Ndiaye AU - E. M. Parilina TI - An epidemic model of malaria without and with vaccination. Pt 2. A model of malaria with vaccination JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2022 SP - 555 EP - 567 VL - 18 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSPUI_2022_18_4_a9/ LA - ru ID - VSPUI_2022_18_4_a9 ER -
%0 Journal Article %A S. M. Ndiaye %A E. M. Parilina %T An epidemic model of malaria without and with vaccination. Pt 2. A model of malaria with vaccination %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2022 %P 555-567 %V 18 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSPUI_2022_18_4_a9/ %G ru %F VSPUI_2022_18_4_a9
S. M. Ndiaye; E. M. Parilina. An epidemic model of malaria without and with vaccination. Pt 2. A model of malaria with vaccination. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 18 (2022) no. 4, pp. 555-567. http://geodesic.mathdoc.fr/item/VSPUI_2022_18_4_a9/
