New application of multiple linear regression method-A case in China air quality
    
    
  
  
  
      
      
      
        
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 18 (2022) no. 4, pp. 516-526
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper, we propose an econometric model based on the multiple linear regression method. This research aims to evaluate the most important factors of the dependent variable. To be more specific, we consider the properties of this model, model quality, parameters test, checking the residual of the model. Then, to ensure that the prediction model is optimal, we use the backward elimination stepwise regression method to get the final model. At the same time, we also need to check the properties in each step. Finally, the results are illustrated by a real case in China air quality. The achieved model was applied to predict the 31 capital cities in Сhina's air quality index (AQI) during 2013–2019 per year. All calculations and tests were achieved by using $R$-studio. The dependent variable is the China's AQI. The control variables are six pollutant factors and four meteorological factors. In summary, the model shows that the most significant influencing factor of the AQI in China is PM$_{2.5}$, followed by O$_3$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
multiple linear regression, AQI, hypothesis test, PM$_{2.5}$, O$_3$.
Mots-clés : air pollution
                    
                  
                
                
                Mots-clés : air pollution
@article{VSPUI_2022_18_4_a5,
     author = {Y. He and D. Qi and V. M. Bure},
     title = {New application of multiple linear regression {method-A} case in {China} air quality},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {516--526},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2022_18_4_a5/}
}
                      
                      
                    TY - JOUR AU - Y. He AU - D. Qi AU - V. M. Bure TI - New application of multiple linear regression method-A case in China air quality JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2022 SP - 516 EP - 526 VL - 18 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSPUI_2022_18_4_a5/ LA - en ID - VSPUI_2022_18_4_a5 ER -
%0 Journal Article %A Y. He %A D. Qi %A V. M. Bure %T New application of multiple linear regression method-A case in China air quality %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2022 %P 516-526 %V 18 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSPUI_2022_18_4_a5/ %G en %F VSPUI_2022_18_4_a5
Y. He; D. Qi; V. M. Bure. New application of multiple linear regression method-A case in China air quality. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 18 (2022) no. 4, pp. 516-526. http://geodesic.mathdoc.fr/item/VSPUI_2022_18_4_a5/
