Mots-clés : graphene, structure
@article{VSPUI_2022_18_1_a3,
author = {D. Yu. Kuranov and T. A. Andreeva and M. E. Bedrina},
title = {Calculation of the ionization potential of zinc and graphene phthalocyaninates on the surface of dielectrics},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {52--62},
year = {2022},
volume = {18},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2022_18_1_a3/}
}
TY - JOUR AU - D. Yu. Kuranov AU - T. A. Andreeva AU - M. E. Bedrina TI - Calculation of the ionization potential of zinc and graphene phthalocyaninates on the surface of dielectrics JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2022 SP - 52 EP - 62 VL - 18 IS - 1 UR - http://geodesic.mathdoc.fr/item/VSPUI_2022_18_1_a3/ LA - ru ID - VSPUI_2022_18_1_a3 ER -
%0 Journal Article %A D. Yu. Kuranov %A T. A. Andreeva %A M. E. Bedrina %T Calculation of the ionization potential of zinc and graphene phthalocyaninates on the surface of dielectrics %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2022 %P 52-62 %V 18 %N 1 %U http://geodesic.mathdoc.fr/item/VSPUI_2022_18_1_a3/ %G ru %F VSPUI_2022_18_1_a3
D. Yu. Kuranov; T. A. Andreeva; M. E. Bedrina. Calculation of the ionization potential of zinc and graphene phthalocyaninates on the surface of dielectrics. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 18 (2022) no. 1, pp. 52-62. http://geodesic.mathdoc.fr/item/VSPUI_2022_18_1_a3/
[1] Egorov N. V., Vinogradova E. M., “Mathematical modeling of triode system on the basis of field emitter with ellipsoid shape”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 17:2 (2021), 131–136 | DOI | MR
[2] Simon Zh., Andre Zh. Zh., Molekulyarnye poluprovodniki, Mir, Fotoelektricheskie svoistva i solnechnye elementy M., 1988, 342 pp.; Simon J., Andre J.-J., Molecular semiconductors: photoelectrical properties and solar cells, Reprint of the original $1^{\rm st}$ ed., eds. J. M. Lehn, C. W. Rees, 1985; Springer Publ., 2011, 306 pp.
[3] Xie D., Pan W., Jiang Y. D., Li Y. R., “Erbium bis[phthalocyaninato] complex LB film gas sensor”, Materials Letters, 57:16–17 (2003), 2395–2398 | DOI
[4] Dini D., Hanack M., “Physical properties of phthalocyanine-based materials”, The porphyrin handbook, Ch. 107, v. 17, eds. by K. M. Kadish, K. M. Smith, R. Guilard, Elsevier Science, Netherlands, 2003, 1–36
[5] Dini D., Calvete M. J. F., Hanack M., “Nonlinear optical materials for the smart filtering of optical radiation”, Chem. Rev., 116:22 (2016), 13043–13233 | DOI
[6] Mroz P., Tegos G., Gali H., “Photodynamic therapy with fullerenes”, Photochemical $\$ Photobiological Sciences, 6:11 (2007), 1139–1149 | DOI
[7] Yourre T. A., Rudaya L. I., Klimova N. V., Polymers, phosphors, and voltaics for radioisotope microbatteries, CRC Press, Boca Raton, 2002, 504 pp.
[8] Wohrle D., Schnurpfeil G., Makarov S. G., Kazarin A., Suvorova O. N., “Practical applications of phthalocyanines — from dyes and pigments to materials for optical, electronic and photo-electronic devices”, Macroheterocycles, 5:3 (2012), 191–202 | DOI
[9] Kruchinin V. N., Klyamer D. D., Spesivcev E. V., Ryhlickij S. V., Basova T. V., “Optical properties of thin films of zinc phthalocyanines according to spectral ellipsometry”, Optics and spektroscopy, 125:6 (2018), 825–829 (In Russian)
[10] Mirabito T., Huet B., Briseno A. L., Snyder D. W., “Physical vapor deposition of zinc phthalocyanine nanostructures on oxidized silicon and graphene substrates”, J. of Crystal Growth, 533 (2020), 2–6 | DOI
[11] Semenov S. G., “Quantum-chemical model of a molecule in a polarizing medium”, Journal of Structural Chemistry, 42:3 (2001), 582–586 (In Russian)
[12] Kuranov D. Yu., Bedrina M. E., “Modeling the interaction of nanostructures with a surface”, Nano- and microsystems technology, 21:2 (2019), 83–88 (In Russian)
[13] Koch W., Holthausen M., A Chemist's guide to density functional theory, Ed. 2, Wiley-VCH, Weinheim, 2002, 293 pp.
[14] Bedrina M. E., Egorov N. V., Kuranov D. Yu., Semenov S. G., “Calculation metalphthalocyaninatozinc on the high-efficiency computer complex”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2011, no. 3, 13–21 (In Russian)
[15] Becke A. D., “Density-functional thermochemistry. 3. The role of exact exchange”, Thin Solid Films, 98:7 (1993), 5648–5652
[16] Vasiliev A. A., Bedrina M. E., Andreeva T. A., “The dependence of calculation results on the density functional theory from the means of presenting the wave function”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 14:1 (2018), 51–58 (In Russian) | DOI | MR
[17] Andreeva T. A., Bedrina M. E., Ovsyannikov D. A., “Comparative analysis of calculation methods in electron spectroscopy”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 15:4 (2019), 518–528 (In Russian) | DOI | MR
[18] Frisch M. J., Trucks G. W., Schlegel H. B. et al., GAUSSIAN-09. Rev. C.01, Gaussian Inc., Wallingford, CT, 2010
[19] Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A., “Electric field effect in atomically thin carbon films”, Science, 306:5696 (2004), 666–669 | DOI
[20] Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Katsnelson M. I., Grigorieva I. V., Dubonos S. V., Firsov A. A., “Two-dimensional gas of massless Dirac fermions in graphene”, Nature, 438:7065 (2005), 197–200 | DOI
[21] Vilesov F. I., Zagrubskij A. A., Garbuzov D. E., “External photoelectric effect from the surface of organic semiconductors”, Physics of the Solid State, 5:7 (1963), 2000–2006 (In Russian)