Calculation of the ionization potential of zinc and graphene phthalocyaninates on the surface of dielectrics
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 18 (2022) no. 1, pp. 52-62 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A mathematical model is proposed for calculating the ionization potentials of molecules on the surface of dielectrics in order to quantify changes in the electronic characteristics of materials on a substrate. The semiconductor and photoelectronic properties of nanosystems based on phthalocyanine derivatives are determined by the electronic structure of molecules. Based on the zinc phthalocyaninate molecule ZnC$_{32}$N$_8$H$_{16}$, model structures are constructed that increase this molecule by attaching benzene rings ZnC$_{48}$N$_8$H$_{24}$, ZnC$_{64}$N$_8$H$_{32}$ and a model simulating the film structure of Zn$_4$C$_{120}$N$_{32}$ H$_{48}$. Graphene was considered as a nanostructure modeling a fragment of a monomer lm. The ionization potentials of these compounds on the surface of magnesium oxide, sodium chloride and silicon are calculated. In the presence of a substrate, the ionization potentials of all nanostructures decrease, while the values of the surface ionization potentials remain fundamentally dierent in their magnitude for all compounds. The compound ZnC$_{64}$N$_8$H$_{32}$ sprayed onto the surface exhibits the best photoelectronic properties, its surface ionization potential is comparable to graphene.
Keywords: phthalocyanine zinc, dielectric surface, ionization potential.
Mots-clés : graphene, structure
@article{VSPUI_2022_18_1_a3,
     author = {D. Yu. Kuranov and T. A. Andreeva and M. E. Bedrina},
     title = {Calculation of the ionization potential of zinc and graphene phthalocyaninates on the surface of dielectrics},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {52--62},
     year = {2022},
     volume = {18},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2022_18_1_a3/}
}
TY  - JOUR
AU  - D. Yu. Kuranov
AU  - T. A. Andreeva
AU  - M. E. Bedrina
TI  - Calculation of the ionization potential of zinc and graphene phthalocyaninates on the surface of dielectrics
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2022
SP  - 52
EP  - 62
VL  - 18
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2022_18_1_a3/
LA  - ru
ID  - VSPUI_2022_18_1_a3
ER  - 
%0 Journal Article
%A D. Yu. Kuranov
%A T. A. Andreeva
%A M. E. Bedrina
%T Calculation of the ionization potential of zinc and graphene phthalocyaninates on the surface of dielectrics
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2022
%P 52-62
%V 18
%N 1
%U http://geodesic.mathdoc.fr/item/VSPUI_2022_18_1_a3/
%G ru
%F VSPUI_2022_18_1_a3
D. Yu. Kuranov; T. A. Andreeva; M. E. Bedrina. Calculation of the ionization potential of zinc and graphene phthalocyaninates on the surface of dielectrics. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 18 (2022) no. 1, pp. 52-62. http://geodesic.mathdoc.fr/item/VSPUI_2022_18_1_a3/

[1] Egorov N. V., Vinogradova E. M., “Mathematical modeling of triode system on the basis of field emitter with ellipsoid shape”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 17:2 (2021), 131–136 | DOI | MR

[2] Simon Zh., Andre Zh. Zh., Molekulyarnye poluprovodniki, Mir, Fotoelektricheskie svoistva i solnechnye elementy M., 1988, 342 pp.; Simon J., Andre J.-J., Molecular semiconductors: photoelectrical properties and solar cells, Reprint of the original $1^{\rm st}$ ed., eds. J. M. Lehn, C. W. Rees, 1985; Springer Publ., 2011, 306 pp.

[3] Xie D., Pan W., Jiang Y. D., Li Y. R., “Erbium bis[phthalocyaninato] complex LB film gas sensor”, Materials Letters, 57:16–17 (2003), 2395–2398 | DOI

[4] Dini D., Hanack M., “Physical properties of phthalocyanine-based materials”, The porphyrin handbook, Ch. 107, v. 17, eds. by K. M. Kadish, K. M. Smith, R. Guilard, Elsevier Science, Netherlands, 2003, 1–36

[5] Dini D., Calvete M. J. F., Hanack M., “Nonlinear optical materials for the smart filtering of optical radiation”, Chem. Rev., 116:22 (2016), 13043–13233 | DOI

[6] Mroz P., Tegos G., Gali H., “Photodynamic therapy with fullerenes”, Photochemical $\$ Photobiological Sciences, 6:11 (2007), 1139–1149 | DOI

[7] Yourre T. A., Rudaya L. I., Klimova N. V., Polymers, phosphors, and voltaics for radioisotope microbatteries, CRC Press, Boca Raton, 2002, 504 pp.

[8] Wohrle D., Schnurpfeil G., Makarov S. G., Kazarin A., Suvorova O. N., “Practical applications of phthalocyanines — from dyes and pigments to materials for optical, electronic and photo-electronic devices”, Macroheterocycles, 5:3 (2012), 191–202 | DOI

[9] Kruchinin V. N., Klyamer D. D., Spesivcev E. V., Ryhlickij S. V., Basova T. V., “Optical properties of thin films of zinc phthalocyanines according to spectral ellipsometry”, Optics and spektroscopy, 125:6 (2018), 825–829 (In Russian)

[10] Mirabito T., Huet B., Briseno A. L., Snyder D. W., “Physical vapor deposition of zinc phthalocyanine nanostructures on oxidized silicon and graphene substrates”, J. of Crystal Growth, 533 (2020), 2–6 | DOI

[11] Semenov S. G., “Quantum-chemical model of a molecule in a polarizing medium”, Journal of Structural Chemistry, 42:3 (2001), 582–586 (In Russian)

[12] Kuranov D. Yu., Bedrina M. E., “Modeling the interaction of nanostructures with a surface”, Nano- and microsystems technology, 21:2 (2019), 83–88 (In Russian)

[13] Koch W., Holthausen M., A Chemist's guide to density functional theory, Ed. 2, Wiley-VCH, Weinheim, 2002, 293 pp.

[14] Bedrina M. E., Egorov N. V., Kuranov D. Yu., Semenov S. G., “Calculation metalphthalocyaninatozinc on the high-efficiency computer complex”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2011, no. 3, 13–21 (In Russian)

[15] Becke A. D., “Density-functional thermochemistry. 3. The role of exact exchange”, Thin Solid Films, 98:7 (1993), 5648–5652

[16] Vasiliev A. A., Bedrina M. E., Andreeva T. A., “The dependence of calculation results on the density functional theory from the means of presenting the wave function”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 14:1 (2018), 51–58 (In Russian) | DOI | MR

[17] Andreeva T. A., Bedrina M. E., Ovsyannikov D. A., “Comparative analysis of calculation methods in electron spectroscopy”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 15:4 (2019), 518–528 (In Russian) | DOI | MR

[18] Frisch M. J., Trucks G. W., Schlegel H. B. et al., GAUSSIAN-09. Rev. C.01, Gaussian Inc., Wallingford, CT, 2010

[19] Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A., “Electric field effect in atomically thin carbon films”, Science, 306:5696 (2004), 666–669 | DOI

[20] Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Katsnelson M. I., Grigorieva I. V., Dubonos S. V., Firsov A. A., “Two-dimensional gas of massless Dirac fermions in graphene”, Nature, 438:7065 (2005), 197–200 | DOI

[21] Vilesov F. I., Zagrubskij A. A., Garbuzov D. E., “External photoelectric effect from the surface of organic semiconductors”, Physics of the Solid State, 5:7 (1963), 2000–2006 (In Russian)