Comparative analysis of calculation methods in electron spectroscopy
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 15 (2019) no. 4, pp. 518-528 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The possibilities of the electron density functional method DFT with hybrid functionals B3LYP and M06-HF with various basis sets for calculating the electronic spectra of molecules were analyzed. It was shown that the specific form of the basis sets 6-31G, cc-PVDZ, 6-311 $++$ G ** are not significantly influence on the value of the long-wave transition band in the electronic absorption spectrum of 3,6-diamino-N-methyl phthalimide. The choice of the hybrid potential in the method of the non-stationary theory of the TD-DFT density functional and especially using CIS configuration interaction scheme leads to noticeable differences in the calculated values of the ($\pi-\pi*$)-transition band. For all other transitions, the changes were not so significant. The electronic spectra of ten compounds — substituted phthalimide were calculated by different methods using the 6-31G basis set. The structure of a substance uniquely determines the spectrum pattern. Comparing results of calculations of these compounds by the TD-DFT method and the CIS method, which includes single-excited states, we concluded that the best agreement with the experiment is observed using the CIS method and the 6-31G basis set.
Keywords: density functional theory, basis functions, TD-DFT, electronic spectra
Mots-clés : CIS, phthalimides.
@article{VSPUI_2019_15_4_a7,
     author = {T. A. Andreeva and M. E. Bedrina and D. A. Ovsyannikov},
     title = {Comparative analysis of calculation methods in electron spectroscopy},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {518--528},
     year = {2019},
     volume = {15},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2019_15_4_a7/}
}
TY  - JOUR
AU  - T. A. Andreeva
AU  - M. E. Bedrina
AU  - D. A. Ovsyannikov
TI  - Comparative analysis of calculation methods in electron spectroscopy
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2019
SP  - 518
EP  - 528
VL  - 15
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2019_15_4_a7/
LA  - ru
ID  - VSPUI_2019_15_4_a7
ER  - 
%0 Journal Article
%A T. A. Andreeva
%A M. E. Bedrina
%A D. A. Ovsyannikov
%T Comparative analysis of calculation methods in electron spectroscopy
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2019
%P 518-528
%V 15
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2019_15_4_a7/
%G ru
%F VSPUI_2019_15_4_a7
T. A. Andreeva; M. E. Bedrina; D. A. Ovsyannikov. Comparative analysis of calculation methods in electron spectroscopy. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 15 (2019) no. 4, pp. 518-528. http://geodesic.mathdoc.fr/item/VSPUI_2019_15_4_a7/

[1] W. Koch, M. C. Holthausen, A chemist's guide to density functional theory, Second ed., Wiley-VCH Verlag GmbH, Weinheim, Germany, 2001, 306 pp.

[2] P. V. Yurenev, A. V. Shcherbinin, N. F. Stepanov, “The applicability of TD-DFT methods to calculations of the electronic absorption spectrum of hexaamminoruthenium (II) in aqueous solution”, Russian Journal of Physical Chemistry, 84:1 (2010), 44–48 (In Russian)

[3] Y. Tawada, T. Tsuneda, S. Yanagisawa, “A long-range-corrected time-dependent density functional theory”, The Journal of Chemical Physics, 120 (2004), 8425 | DOI

[4] V. Maslov, “Interpretation of the electronic spectra of phthalocyanines with transition metals from quantum-chemical calculations by the density functional method”, Optics and Spectroscopy, 101:6 (2006), 853–861 | DOI

[5] A. Safonov, A. Bagaturyants, V. Sazhnikov, “Assessment of TDDFT- and CIS-based methods for calculating fluorescence spectra of (dibenzoylmethanato)boron difluoride exciplexes with aromatic hydrocarbons”, Journal of Molecular Modeling, 164:23 (2017), 164–167 | DOI

[6] W. Kohn, A. D. Becke, R. G. Parr, “Density functional theory of electronicstructure”, Journal Physical Chemistry, 100:31 (1996), 12974–12980 | DOI

[7] W. Kohn, L. Sham, “Self-consistent equations including exchange and correlation effects”, Physical Review, 140:4A (1965), A1133–A1138 | DOI | MR

[8] J. P. Perdew, Y. Wang, “Accurate and simple analytic representation of the electron-gas correlation energy”, Physical Review, B45 (1992), 13244–13249 | DOI

[9] A. D. Becke, “Density-functional exchange-energy approximation with correct asymptotic behaviour”, Physical Review A, 38 (1988), 3098–3100 | DOI

[10] C. Lee, W. Yang, R. G. Parr, “Development of the Colle?Salvetti correlation-energy formula into a functional of the electron density”, Physical Review B, 37:2 (1988), 785–789 | DOI

[11] Y. Zhao, D. Truhlar, “The M06 suite of density functional for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functional and systematic testing of four M06-class functional and 12 other functional”, Theoretical Chemistry Accounts, 120:1–3 (2008), 215–241 | DOI

[12] Y. Zhao, D. Truhlar, “Density functional for spectroscopy: no long-range self-interaction error, good performance for rydberg and charge-transfer states, and better performance on average than B3LYP for ground states”, Journal of Physical Chemistry A, 110:49 (2006), 13126–13130 | DOI

[13] C. Adamo, V. Barone, “Toward reliable density functional methods without adjustable parameters: The PBE0 model”, Journal of Chemical Physics, 110:13 (1999), 6158–6170 | DOI

[14] T. Veselova, E. Viktorova, V. Klochkov, A. Makushenko, I. Reznikova, O. V. Stolbova, “Spectral and luminescent properties of phthalimidesin vapors and solutions”, Optics and Spectroscopy, 79:1 (1995), 60–76 (In Russian)

[15] T. A. Andreeva, M. E. Bedrina, “The influence of hybrid potentials of the DFT method on the results of study of liquid crystal phase of a substance”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control processes, 2015, no. 1, 16–25 (In Russian)

[16] T. A. Andreeva, M. E. Bedrina, “Dependence of calculation results on the density functional theory from the means of presenting the wave function”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control processes, 14:1 (2018), 52–59 (In Russian) | MR

[17] A. V. Aristov, S. G. Semenov, “Quantum-chemical interpretation of the electronic spectra of aminophthalimides in the gaseous phase and in solution”, Theoretical and Experimental Chemistry, 28:6 (1984), 713–717 (In Russian)