Prediction of the spatial distribution of ecological data using kriging and binary regression
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2016), pp. 97-105 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

There are many ecological problems associated with the prediction of the spatial distribution of ecological parameters. The paper deals with one of these tasks. Suppose we have a set of ecological data measured by contact way (for example, plant leaf color intensity by N-tester), as well as an air photo of the object (for example, field). It is necessary to estimate the spatial distribution of ecological parameters. This paper proposes an approach to the solution of such problems with the joint use of kriging and binary regression. At first the uniform field areas (clusters) in the photo are determined using classification method. It is assumed that each selected area has a set of ecological data. Next, we will consider each zone separately. It is necessary to assess the level of the indicator in the given area. First variograms analysis is performed leading to the construction of the variogram model. Next construct a set of ecological parameter estimates is built using the method of ordinary kriging. Then, we set a threshold value of the ecological parameter for the zone under study. We introduced a variable that takes the value 1, if the parameter exceeds a threshold, and 0 otherwise. Thus we get a basis for logistic regression, where factors include a set of estimates predicted by kriging. In addition, these factors may include the color characteristics from air photos. As a result, we can calculate for each point the probability, if it will be close to 1, there is reason to believe that at this point the parameter value is greater than the threshold, and if the probability is close to 0, there is reason to assume that the parameter value is below the threshold. Furthermore, this paper provides an example of the approach for simulated data using R. Refs 8. Figs 4. Table 1.
Keywords: ecological data, ordinary kriging, logistic regression
Mots-clés : R.
@article{VSPUI_2016_3_a8,
     author = {V. M. Bure and O. A. Mitrofanova},
     title = {Prediction of the spatial distribution of ecological data using kriging and binary regression},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {97--105},
     year = {2016},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2016_3_a8/}
}
TY  - JOUR
AU  - V. M. Bure
AU  - O. A. Mitrofanova
TI  - Prediction of the spatial distribution of ecological data using kriging and binary regression
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2016
SP  - 97
EP  - 105
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2016_3_a8/
LA  - ru
ID  - VSPUI_2016_3_a8
ER  - 
%0 Journal Article
%A V. M. Bure
%A O. A. Mitrofanova
%T Prediction of the spatial distribution of ecological data using kriging and binary regression
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2016
%P 97-105
%N 3
%U http://geodesic.mathdoc.fr/item/VSPUI_2016_3_a8/
%G ru
%F VSPUI_2016_3_a8
V. M. Bure; O. A. Mitrofanova. Prediction of the spatial distribution of ecological data using kriging and binary regression. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2016), pp. 97-105. http://geodesic.mathdoc.fr/item/VSPUI_2016_3_a8/

[1] Bure V. M., “Methodological aspects of statistical analysis in precision agriculture”, Russian Agricultural Sciences, 2007, no. 6, 54–56 (In Russian)

[2] Mitrofanova O. A., Bure V. M., Kanash E. V., “Mathematical module to automate the colorimetric method for estimating nitrogen status of plants”, Vestnik of Saint Petersburg University. Series 10. Applied mathematics. Computer science. Control processes, 2016, no. 1, 85–91 (In Russian)

[3] Yakushev V. P., Bure V. M., “Approach to evaluating bioequivalence of two plots on an agricultural field”, Russian Agricultural Sciences, 2006, no. 5, 38–40 (In Russian)

[4] Dem'ianov V. V., Savel'eva E. A., Geostatistics: theory and practice, Nuclear Safety Institute of the Russian Academy of Sciences, M.; Nauka Publ., 2010, 327 pp. (In Russian)

[5] Bure V. M., “Methodology of using binary regression in precision agriculture”, Poluektov's readings (2014), 118–121 (In Russian)

[6] Yakushev V. P., Bure V. M., Parilina E. M., Binary regression and its application in agrophysics, Agrophys. Institute Publ., Saint Petersburg, 2015, 36 pp. (In Russian)

[7] Fernandes G. B., Artes R., “Spatial dependence in credit risk and its improvement in credit scoring”, European J. of Operational Research, 249 (2016), 517–524 | DOI | MR | Zbl

[8] Bure V. M., Parilina E. M., Probability theory and mathematical statistics, Educational guide, Lan' Publ., Saint Petersburg, 2013, 416 pp. (In Russian)