Mathematical modelling of cervical spine dynamics under impulse impacts
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2016), pp. 53-65 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to the mathematical modelling of the heard–neck system dynamics during impulse acceleration, which arises in the case of the ground and air vehicle crushes. Analysis of previous papers showed that the main limiting factors are, on the one hand, very complicated inner structure of the neck, and on the other hand, incomplete knowledge of the mechanical properties of the muscles and intervertebral discs. For this reason, complex mechanical models do not have sufficient experimental validation. In this regard, the authors proposed a simple mechanical model of the “head–neck” system with eight degrees of freedom. They are the rotation angles of the head and seven cervical vertebrae. These angles are considered as generalized coordinates. The intervertebral discs are modeled as hinge joints provided with helical springs and dampers. When modelling a large number of neck muscles, they were integrated into two groups of muscles-antagonists, each of which is represented in the model as generalized muscle. The model motion is described by a system of ordinary differential equations obtained by Lagrange's method. The coordination between a model head motion and a volunteer head motion served as the model adequacy criterion. The assessment of discordance was performed by the method of least squares. For the search of the unknown model parameters the minimization of this discordance was executed. In doing so the Nelder–Mead method was applied. The Akima splines were used for a experimental data approximation and for search of unknown model parameters. Refs 23. Figs 12.
Keywords: mathematical modelling, heard–neck system, mechanical model, ordinary differential equations, Akima spline, Nelder–Mead method.
@article{VSPUI_2016_1_a4,
     author = {V. P. Tregubov and N. A. Selezneva},
     title = {Mathematical modelling of cervical spine dynamics under impulse impacts},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {53--65},
     year = {2016},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2016_1_a4/}
}
TY  - JOUR
AU  - V. P. Tregubov
AU  - N. A. Selezneva
TI  - Mathematical modelling of cervical spine dynamics under impulse impacts
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2016
SP  - 53
EP  - 65
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2016_1_a4/
LA  - ru
ID  - VSPUI_2016_1_a4
ER  - 
%0 Journal Article
%A V. P. Tregubov
%A N. A. Selezneva
%T Mathematical modelling of cervical spine dynamics under impulse impacts
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2016
%P 53-65
%N 1
%U http://geodesic.mathdoc.fr/item/VSPUI_2016_1_a4/
%G ru
%F VSPUI_2016_1_a4
V. P. Tregubov; N. A. Selezneva. Mathematical modelling of cervical spine dynamics under impulse impacts. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2016), pp. 53-65. http://geodesic.mathdoc.fr/item/VSPUI_2016_1_a4/

[1] Severy D. M., Mathewson L. H., Bechtol C. O., “Controlled automobile rear-end collisions — an investigation of related engineering and medical phenomena”, Proc. of the Montreal conference on medical aspects of traffic accidents (1955), 152–184

[2] Davidson J., Deutscher C., Hell W., Linder A., Lovsund P., Svensson M. Y., “Human volunteer kinematics in rear-end sled collisions”, Proc. of Intern. Council on biomechanics of impact (Goteborg, Sweden, 1998), 289–301 | Zbl

[3] Yamazaki K., Ono K., Kaneoka K., “A simulation analysis of human cervical motion during low speed rear-end impacts”, Proc. of Society of Automotive Engineers World Congress (Detroit, USA, 2000), 186–192

[4] Tencer A. F., Mirza S. K., Bensel K., “The response of human volunteers to rear-end impacts: the effect of head restraint properties”, Spine, 26 (2001), 2432–2440 | DOI

[5] Martinez J. L., Garcia D. J., “A model for whiplash”, Journal of Biomechanics, 1:1 (1965), 23–32 | DOI

[6] McHenry R. R., Naab K. N., Computer simulation of the automobile crash victim in a frontal collision, A validation study report N YB-2126-V-1, Cornell Aeronautical Laboratory, New York, 1966, 86 pp.

[7] Tregubov V. P., “Analysis of the human body behavior under horizontal pulse action”, Physical mechanics, 2, Leningrad University Publ., L., 1976, 140–154 (In Russian)

[8] Tregubov V. P., Klikunova K. A., Asanchevsky V. V., “Some peculiarities of the skeletal muscle modeling”, Acta of Bioengineering and Biomechanics, 10:1, suppl. (2008), 30–36

[9] Orne D., King Y. Liu, “A mathematical model of spinal response to impact”, Journal of Biomechanics, 4:1 (1971), 49–71 | DOI

[10] McKenzie J. A., Williams J. F., “Dynamics of cervical spine during whiplash”, Journal of Biomechanics, 4:6 (1971), 477–491 | DOI

[11] Panjubi M., Brand R., White A., “Tree dimensional flexibility and stiffness properties of human thoracic spine”, Journal of Biomechanics, 9 (1976), 185–192 | DOI

[12] Maroney S., Schultz A., Miller J., Anderson G., “Load-displacement properties of lower cervical spine motion segments”, Journal of Biomechanics, 21 (1988), 769–779 | DOI

[13] Shea M., Edwards W. T., White A. A., Hayes W., “Variations of stiffness and strength along the human cervical spine”, Journal of Biomechanics, 2 (1991), 95–107 | DOI

[14] Sobczak P., Golinski W. Z., Gentle R. C., “Biomechanical evaluation of anterior cervical spine stabilization using the finite element approach”, Acta of Bioengineering and Biomechanics, 1:1 (1999), 95–100

[15] Pintar F. A., Miclebust J., Sances A. (Jr.), Yoganandan N., “Biomechanical properties of human intervertebral disk in tension”, Proc. ASMEF Advances in Bioegineering (New York, USA, 1986), 38–39

[16] Ciach M., Awrejcewicz J., Maciejczak A., Radek M., “Experimental and numerical investigations of C5–C6 cervical spinal segment before and after discectomy using the Cloward operation technique”, Acta of Bioengineering and Biomechanics, 1:1 (1999), 101–105

[17] Yoganandan N., Kumaresan S., Pintar F. A., “Geometrical and mechanical properties of human cervical spine ligaments”, Journal of Biomech. Engineering, 22 (2000), 623–629 | DOI

[18] Deng D. C., Goldsmith W., “Response of a human head/neck/upper-torso replica to dynamic loading. II. Analytical-numerical model”, Journal of Biomechanics, 20:5 (1987), 487–497 | DOI

[19] Skrzupiec D. M., Pollintine P., Przybyla A., Dolan P., Adams M. A., “The internal mechanical properties of cervical intervertebral discs as revealed by stress profilometry”, European Spine Journal, 6:10 (2007), 1701–1709 | DOI

[20] Stupakov G. P., Kozlovsy A. P., Kazejkin V. S., Biomechanics of vertebral column under the shock overload in the practice of aviation and space flights, Nauka Publ., L., 1987, 240 pp. (In Russian)

[21] Stemper B. D., Yoganandan N., Pinter F. A., “Validation of a head–neck computer model for whiplash simulation”, Medical Biological Engineering Computing, 42 (2004), 333–338 | DOI

[22] Takeshima T., Omokawa S., Takaoka T., Araki M., Ueda Y., Takakura Y., “Sagittal alignment of cervical flexion and expencion”, Spine, 22 (2002), 2432–2442

[23] Hill A. V., First and last experiments in muscle mechanics, Cambridge University Press, Cambridge, 1970, 180 pp.