On $B_\varphi$-spline approximation
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2013), pp. 67-72
Voir la notice de l'article provenant de la source Math-Net.Ru
Evaluations of approach for function $u\in C^2(\alpha,\beta)$ with biorthogonal non-polynomial $B_\varphi$-spline approximation $\widetilde u$ of the first order are discussed. Spline grid $\{x_j\}_{j\in\mathbb Z}$ is defined on an interval $(\alpha, \beta)$ such that $\lim_{j\to -\infty}x_j=\alpha$, $\lim_{j\to +\infty}x_j=\beta$. Coordinate $B_\varphi$-splines are obtained by approximation relations with generating vector-function $\varphi=(\varphi_0,\varphi_1)^T$ under condition that absolute value of Wronskian for the functions $\varphi_0,\varphi_1$ isn't less than $c>0$. The method of integral representation of residual is applied; the last one differs from method of similarity, which is implicated in the case of polynomial splines. As a result the evaluations of norms $\|u^{(i)}-\widetilde u^{(i)}\|_{C[x_k,x_{k+1}]}$ are obtained by product of $2c^{-1}(x_{k+1}-x_{k})^{2-i}$ and $$\sup_{\xi,\eta\in [x_k,x_{k+1}]} |\det(\Phi(x_k),\Phi\,'(\xi),\Phi\,''(\eta))|;$$ here $\Phi(t)= (\varphi_0(t),\varphi_1(t),u(t))^T$, $i=0,1,2$. The evaluations are exact for components of generating vector-functions $\varphi$. If $x_{k+1}-x_k\to 0$ then the determinant tends to the linear differential operator of the second order over function $u$, where fundamental solutions of the differential equation with mentioned operator and zero right part are functions $\varphi_0(t),\varphi_1(t)$. Bibliogr. 3.
Keywords:
splines, biorthogonal systems, residual of approximation.
@article{VSPUI_2013_3_a6,
author = {Yu. K. Demjanovich and V. O. Dron and O. N. Ivantsova},
title = {On $B_\varphi$-spline approximation},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {67--72},
publisher = {mathdoc},
number = {3},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2013_3_a6/}
}
TY - JOUR AU - Yu. K. Demjanovich AU - V. O. Dron AU - O. N. Ivantsova TI - On $B_\varphi$-spline approximation JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2013 SP - 67 EP - 72 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSPUI_2013_3_a6/ LA - ru ID - VSPUI_2013_3_a6 ER -
%0 Journal Article %A Yu. K. Demjanovich %A V. O. Dron %A O. N. Ivantsova %T On $B_\varphi$-spline approximation %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2013 %P 67-72 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSPUI_2013_3_a6/ %G ru %F VSPUI_2013_3_a6
Yu. K. Demjanovich; V. O. Dron; O. N. Ivantsova. On $B_\varphi$-spline approximation. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2013), pp. 67-72. http://geodesic.mathdoc.fr/item/VSPUI_2013_3_a6/