On $B_\varphi$-spline approximation
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2013), pp. 67-72

Voir la notice de l'article provenant de la source Math-Net.Ru

Evaluations of approach for function $u\in C^2(\alpha,\beta)$ with biorthogonal non-polynomial $B_\varphi$-spline approximation $\widetilde u$ of the first order are discussed. Spline grid $\{x_j\}_{j\in\mathbb Z}$ is defined on an interval $(\alpha, \beta)$ such that $\lim_{j\to -\infty}x_j=\alpha$, $\lim_{j\to +\infty}x_j=\beta$. Coordinate $B_\varphi$-splines are obtained by approximation relations with generating vector-function $\varphi=(\varphi_0,\varphi_1)^T$ under condition that absolute value of Wronskian for the functions $\varphi_0,\varphi_1$ isn't less than $c>0$. The method of integral representation of residual is applied; the last one differs from method of similarity, which is implicated in the case of polynomial splines. As a result the evaluations of norms $\|u^{(i)}-\widetilde u^{(i)}\|_{C[x_k,x_{k+1}]}$ are obtained by product of $2c^{-1}(x_{k+1}-x_{k})^{2-i}$ and $$\sup_{\xi,\eta\in [x_k,x_{k+1}]} |\det(\Phi(x_k),\Phi\,'(\xi),\Phi\,''(\eta))|;$$ here $\Phi(t)= (\varphi_0(t),\varphi_1(t),u(t))^T$, $i=0,1,2$. The evaluations are exact for components of generating vector-functions $\varphi$. If $x_{k+1}-x_k\to 0$ then the determinant tends to the linear differential operator of the second order over function $u$, where fundamental solutions of the differential equation with mentioned operator and zero right part are functions $\varphi_0(t),\varphi_1(t)$. Bibliogr. 3.
Keywords: splines, biorthogonal systems, residual of approximation.
@article{VSPUI_2013_3_a6,
     author = {Yu. K. Demjanovich and V. O. Dron and O. N. Ivantsova},
     title = {On  $B_\varphi$-spline approximation},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {67--72},
     publisher = {mathdoc},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2013_3_a6/}
}
TY  - JOUR
AU  - Yu. K. Demjanovich
AU  - V. O. Dron
AU  - O. N. Ivantsova
TI  - On  $B_\varphi$-spline approximation
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2013
SP  - 67
EP  - 72
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2013_3_a6/
LA  - ru
ID  - VSPUI_2013_3_a6
ER  - 
%0 Journal Article
%A Yu. K. Demjanovich
%A V. O. Dron
%A O. N. Ivantsova
%T On  $B_\varphi$-spline approximation
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2013
%P 67-72
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSPUI_2013_3_a6/
%G ru
%F VSPUI_2013_3_a6
Yu. K. Demjanovich; V. O. Dron; O. N. Ivantsova. On  $B_\varphi$-spline approximation. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2013), pp. 67-72. http://geodesic.mathdoc.fr/item/VSPUI_2013_3_a6/