Inclusion principle and stability-like properties of “partial” equilibrium position of a dynamical system
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2011), pp. 119-132
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In numerous applications, dynamical mathematical models contain subsystems with common parts. In such cases, the extension of phase space of the studied system is used. This extension transforms an initial dynamical system to a system whose subsystems have no common parts. The considered dynamical systems can possess both equilibrium positions in the classical sense and so-called “partial” equilibrium positions. After investigation stability of extended systems equilibrium positions the obtained results are transferred to the initial system by means of phase space constriction. The important problem is that one of determinating conditions under which the realization of the extension-constriction process is possible. These conditions compose the basis of the inclusion principle. In the present paper the stability-like properties with respect to all or to a part of variables of a “partial” equilibrium position of a differential equations system are studied. The conditions are obtained under which these properties can be investigated by the use of the inclusion principle. On the example of the differential equations system with homogeneous right-hand sides of the order $\mu=3,5,\dots$ the technique of the inclusion principle application for the analysis of stability-like properties is demonstrated. The example of the system for which we failed to prove the asymptotic stability without using the inclusion principle is given.
Keywords: dynamical systems, inclusion principle, overlapping decompositions, stability, homogeneous systems.
@article{VSPUI_2011_4_a11,
     author = {A. V. Shchennicov},
     title = {Inclusion principle and stability-like properties of {\textquotedblleft}partial{\textquotedblright} equilibrium position of a dynamical system},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {119--132},
     year = {2011},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2011_4_a11/}
}
TY  - JOUR
AU  - A. V. Shchennicov
TI  - Inclusion principle and stability-like properties of “partial” equilibrium position of a dynamical system
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2011
SP  - 119
EP  - 132
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2011_4_a11/
LA  - ru
ID  - VSPUI_2011_4_a11
ER  - 
%0 Journal Article
%A A. V. Shchennicov
%T Inclusion principle and stability-like properties of “partial” equilibrium position of a dynamical system
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2011
%P 119-132
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2011_4_a11/
%G ru
%F VSPUI_2011_4_a11
A. V. Shchennicov. Inclusion principle and stability-like properties of “partial” equilibrium position of a dynamical system. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2011), pp. 119-132. http://geodesic.mathdoc.fr/item/VSPUI_2011_4_a11/

[1] Siljak D. D., Decentralized Control of Complex Systems, Academic Press, Cambridge, MA, 1991 | MR

[2] Ikeda M., Siljak D. D., White D. E., “An inclusion principle for dynamic systems”, IEEE Transactions, AC-29 (1984), 244–249 | MR | Zbl

[3] Ikeda M., Siljak D. D., “Overlapping decompositions, expansions and contractions of dynamic systems”, Large Scale Systems, 1:29 (1980), 29–38 | MR | Zbl

[4] Ikeda M., Siljak D. D., “Generalized decompositions and stability of nonlinear systems”, Proc. of the 18th Allerton Conference, Monticello, 1980, 726–734

[5] Martynyuk A. A., “Rasshirenie prostranstva sostoyanii dinamicheskikh sistem i problema ustoichivosti”, Prikl. mekhanika, XXII:12 (1986), 10–25

[6] Martynyuk A. A., “Printsip vklyucheniya dlya standartnykh sistem”, Dokl. AN SSSR, 276:1 (1984), 34–37 | MR | Zbl

[7] Vorotnikov V. I., “Dva klassa chastichnoi ustoichivosti: k unifikatsii ponyatii i edinym usloviyam razreshimosti”, Dokl. RAN, 384:1 (2002), 47–51 | MR

[8] Vorotnikov V. I., “Ob ustoichivosti i ustoichivosti po chasti peremennykh «chastichnykh» polozhenii ravnovesiya nelineinykh dinamicheskikh sistem”, Dokl. RAN, 389:3 (2003), 332–337

[9] Vorotnikov V. I., “Chastichnaya ustoichivost i upravlenie: sostoyanie, problemy i perspektivy razvitiya”, Avtomatika i telemekhanika, 2005, no. 4, 3–32

[10] Kosov A. A., “Issledovanie ustoichivosti singulyarnykh sistem metodom vektor-funktsii Lyapunova”, Vestn. S.-Peterb. un-ta. Ser. 10: Prikladnaya matematika, informatika, protsessy upravleniya, 2005, no. 4, 123–129

[11] Kirillov A. N., “Upravlenie mnogostadiinymi tekhnologicheskimi protsessami”, Vestn. S.-Peterb. un-ta. Ser. 10: Prikladnaya matematika, informatika, protsessy upravleniya, 2006, no. 4, 127–131

[12] Rumyantsev V. V., Oziraner A. S., Ustoichivost i stabilizatsiya dvizheniya po otnosheniyu k chasti peremennykh, Nauka, M., 1987, 256 pp.

[13] Panteley E., Loria A., “Crowth rate conditions for uniform asymptotical stability of cascaded time-varying systems”, Automatica, 42 (2006), 645–651 | DOI

[14] Su W., Fu M., “Robust stabilisation of nonlinear cascaded systems”, Automatica, 42 (2006), 645–651 | DOI | MR | Zbl

[15] Chaillet A., Loria A., “Nesessary and sufficient conditions for uniform semiglobal partical asymptotic stability application to cascaded systems”, Automatica, 42 (2006), 1899–1906 | DOI | MR | Zbl

[16] Chaillet A., Angeli D., “Integral input to state stable systems in cascade”, Systems Control Letters, 57 (2008), 519–527 | DOI | MR | Zbl