Non-isothermal mathematical model of blocking tecnogenic fractures
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 30 (2024) no. 4, pp. 101-115 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Nowadays, large oil fields have moved to the stage of declining production, to maintain reservoir pressure, it is necessary to apply flooding technologies. To maintain the previous rates of oil production, it is necessary to force selections by increasing the value of downhole pressure on the injection wells. However, the risks of exceeding the fracturing pressure are increasing, which can lead to the formation of technogenic fractures. An intensive increase in the fracture can lead to an increase in the risks of premature water reaching through it into the drainage zone of the producing wells, which will lead to an increase in the value of the water oil ratio. The analysis of current numerical mathematical models of colmatation of technogenic fracture has shown the status of determining the volume of leaks of the colmatation agent beyond the fracture, considering changes in the temperature field at the bottom of the injection well. This problem is relevant, since special research complexes have been conducted at several oil and gas fields to determine the growth of technogenic fractures that arose because of excess fracturing pressure and fell into the drainage zone of producing wells. A change in the temperature field of the reservoir will allow direct changes in the viscosity of the injected colmatation agent, as well as determine the amount of leakage of the agent beyond the limits of the technogenic fractures. The article describes the construction of a non-isothermal physico-mathematical model of injection of a suspension system (water-reagent) into the reservoir, considering changes in the temperature field of the reservoir, the volume of reagent leaks beyond the limits of the technogenic fracture, considered for the first time. The aim of the work is to establish the dependences of the leakage volume of the colmatation agent, the critical time of filling the fracture from changes in the temperature field at the bottom of the injection well. A nonisothermal reservoir simulation model has been constructed showing the stages of initiation of a technogenic fracture with its subsequent colmation. The distribution of the concentration of the colmatation reagent both in the fracture and outside it, depending on the change in the temperature field at the bottom of the well, is obtained. It is determined that the volume of reagent leaks decreases if changes in the temperature field at the bottom of the injection well are considered with identical well operation parameters and geological and physical characteristics of the formation.
Keywords: non-isothermal reservoir simulation modeling, reagent leakage volume, reservoir properties, temperature field.
@article{VSGU_2024_30_4_a7,
     author = {A. M. Kasperovich and A. P. Shevelev and A. Ya. Gilmanov},
     title = {Non-isothermal mathematical model of blocking tecnogenic fractures},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {101--115},
     year = {2024},
     volume = {30},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2024_30_4_a7/}
}
TY  - JOUR
AU  - A. M. Kasperovich
AU  - A. P. Shevelev
AU  - A. Ya. Gilmanov
TI  - Non-isothermal mathematical model of blocking tecnogenic fractures
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2024
SP  - 101
EP  - 115
VL  - 30
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSGU_2024_30_4_a7/
LA  - ru
ID  - VSGU_2024_30_4_a7
ER  - 
%0 Journal Article
%A A. M. Kasperovich
%A A. P. Shevelev
%A A. Ya. Gilmanov
%T Non-isothermal mathematical model of blocking tecnogenic fractures
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2024
%P 101-115
%V 30
%N 4
%U http://geodesic.mathdoc.fr/item/VSGU_2024_30_4_a7/
%G ru
%F VSGU_2024_30_4_a7
A. M. Kasperovich; A. P. Shevelev; A. Ya. Gilmanov. Non-isothermal mathematical model of blocking tecnogenic fractures. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 30 (2024) no. 4, pp. 101-115. http://geodesic.mathdoc.fr/item/VSGU_2024_30_4_a7/

[1] Shevelev A.P., Gilmanov A.Ya., Fedorov K.M., “Zadacha o blokirovanii tekhnogennoi treschiny v plaste suspenzionnoi smesyu”, Izvestiya RAN. Mekhanika zhidkosti i gaza, 2022, no. 6, 26–33 | DOI | Zbl

[2] Cheremsin A.N., Tostolytkin D.V., Orlova N.S., “Osobennosti modelirovaniya polimernogo zavodneniya v sovremennykh gidrodinamicheskikh simulyatorakh”, Nauka i TEK, 2012, no. 3, 39–43

[3] Galimov R.I., “Tekhnologiya polimernogo zavodneniya na pozdnei stadii razrabotki mestorozhdenii”, Molodoi uchenyi, 2017, no. 40 (174), 4–6 https://moluch.ru/archive/174/44555

[4] Toma A., Sayuk B., Abirov Zh., “Polimernoe zavodnenie dlya uvelicheniya nefteotdachi na mestorozhdeniyakh legkoi i tyazheloi nefti”, Territoriya Neftegaz, 2017, no. 7-8, 58–61 https://cyberleninka.ru/article/n/polimernoe-zavodnenie-dlya-uvelicheniya-nefteotdachina-mestorozhdeniyah-legkoy-i-tyazheloy-nefti

[5] Chernyi S.G., Lapin V.N., Esipov D.V., Kuranakov D.S., Metody modelirovaniya zarozhdeniya i rasprostraneniya treschin, Izdatelstvo Sibirskogo otdeleniya Rossiiskoi akademii nauk, Novosibirsk, 2016, 312 pp.

[6] Maltsev V.V., Asmandiyarov R.N., Baikov V.A., Usmanov T.S., Davletbaev A.Ya., “Issledovanie razvitiya treschin avtoGRP na opytnom uchastke Priobskogo mestorozhdeniya s lineinoi sistemoi razrabotki”, Neftyanoe khozyaistvo, 2012, no. 5, 70–73 https://oil-industry.net/Journal/archive_detail.php?art=195865

[7] Gimazov A.A., Bazyrov I.S., Sposob razrabotki nizkopronitsaemykh i sverkhnizkopronitsaemykh kollektorov putem zavodneniya, Patent RU 2 740 357, 1 pp. https://yandex.ru/patents/doc/RU2740357C1_20210113?ysclid=m53vgi6szc892371744

[8] Yan W., Demin W., Zhi S., Changlan S., Gang W., Desheng L., “Hydraulic fracturing of polymer injection wells”, SPE Asia Pacific Oil and Gas Conference and Exhibition (Perth, Australia, 18-20 October, 2004), SPE-88592-MS | DOI

[9] Dontsov E.V., Peirce A.P., “Slurry flow, gravitational settling and a proppant transport model for hydraulic fractures”, Journal of Fluid Mechanics, 760 (2014), 567–590 | DOI | MR

[10] Baikov V.A., Davletbaev A.Ya., Usmanov T.S., Stepanova Z.Yu., Asmandiyarov R.N., “Spetsialnye gidrodinamicheskie issledovaniya dlya monitoringa za razvitiem treschin GRP v nagnetatelnykh skvazhinakh”, Neftegazovoe delo, 2011, no. 1, 65–75 https://ogbus.ru/files/ogbus/authors/Baikov/Baikov_1.pdf

[11] Tatosov A.V., Shlyapkin A.S., “Dvizhenie proppanta v raskryvayuscheisya treschine gidrorazryva plasta”, Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya Matematika. Mekhanika. Informatika, 18:2 (2018), 217–226 | DOI | MR

[12] Seright R.S., “Use of preformed gels for conformance control in fractured systems”, SPE Production Facilities, 12:1 (1997), 59–65 | DOI

[13] Baikov V.A., Burakov I.M., Latypov I.D., Yakovlev A.A., Asmandiyarov R.N., “Kontrol razvitiya tekhnogennykh treschin avto-GRP pri podderzhanii plastovogo dalveniya na mestorozhdeniyakh OOO «RN-Yuganskneftegaz»”, Neftyanoe khozyaistvo, 2012, no. 11, 30–33

[14] Ruchkin A.A., Yagafarov A.K., Optimizatsiya primeneniya potokootklonyayuschikh tekhnologii na Samotlorskom mestorozhdenii, Vektor Buk, Tyumen, 2005, 165 pp.

[15] A.Ya. Davletbaev i dr., Promyslovye issledovaniya po izucheniyu samoproizvolnogo razvitiya tekhnogennykh treschin v nagnetatelnykh skvazhinakh, Vektor Buk, Tyumen, 2005, 165 pp.

[16] Mobbs A.T., Hammond P.S., “Computer simulations of proppant transport in a hydraulic fracture”, SPE Production Facilities, 16:2 (2001), 112–121 | DOI

[17] Sorbie Kenneth, Polymer-Improved Oil Recivery, Springer Dordrecht, Edinburg, 359 pp. | DOI

[18] Cheng C., Milsch H., “Hydromechanical investigations on the self-propping potential of fractures in tight sandstones”, Rock Mechanics and Rock Engineering, 54 (2021), 5407–5432 | DOI

[19] Seright R.S., “Examination of literature on colloidal dispersion gels for oil recovery”, Petroleum Science, 18:4, 1097–1114 | DOI

[20] Shel E.V., Kabanova P.K., Tkachenko D.R., Bazyrov I.Sh., Logvinyuk A.V., “Modelirovanie initsiatsii i rasprostraneniya treschiny gidrorazryva plasta na nagnetatelnoi skvazhine dlya netrischinovatykh terrigennykh porod na primere Priobskogo mestorozhdeniya”, PRONEFT. Professionalno o nefti, 2020, no. 2 (16), 36–42 | DOI | MR

[21] Shevelev A.P., Gilmanov A.Ya., Kasperovich A.M., “Modelirovanie blokirovaniya treschin avtogidrorazryva plasta v gidrodinamicheskom simulyatore”, Vestnik Tyumenskogo gosudarstvennogo universiteta. Fiziko-matematicheskoe modelirovanie. Neft, gaz, energetika, 9:1 (33) (2023), 78–91 | DOI