Mots-clés : symbol
@article{VSGU_2020_26_1_a0,
author = {G. Dzhangibekov and J. M. Odinabekov},
title = {On the {Noether} theory of two-dimensional singular operators and applications to boundary-value problems for systems of fourth-order elliptic equations},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {7--13},
year = {2020},
volume = {26},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2020_26_1_a0/}
}
TY - JOUR AU - G. Dzhangibekov AU - J. M. Odinabekov TI - On the Noether theory of two-dimensional singular operators and applications to boundary-value problems for systems of fourth-order elliptic equations JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2020 SP - 7 EP - 13 VL - 26 IS - 1 UR - http://geodesic.mathdoc.fr/item/VSGU_2020_26_1_a0/ LA - ru ID - VSGU_2020_26_1_a0 ER -
%0 Journal Article %A G. Dzhangibekov %A J. M. Odinabekov %T On the Noether theory of two-dimensional singular operators and applications to boundary-value problems for systems of fourth-order elliptic equations %J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ %D 2020 %P 7-13 %V 26 %N 1 %U http://geodesic.mathdoc.fr/item/VSGU_2020_26_1_a0/ %G ru %F VSGU_2020_26_1_a0
G. Dzhangibekov; J. M. Odinabekov. On the Noether theory of two-dimensional singular operators and applications to boundary-value problems for systems of fourth-order elliptic equations. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 26 (2020) no. 1, pp. 7-13. http://geodesic.mathdoc.fr/item/VSGU_2020_26_1_a0/
[1] S. G. Mikhlin, Multidimensional singular integrals and integral equations, Fizmatgiz, M., 1962, 254 pp. (In Russ.)
[2] E. M. Stein, “Note on singular integrals”, Proc. Amer. Math. Soc., 8 (1957), 250–254 | DOI | MR | Zbl
[3] I. N. Vekua, Generalized analytic functions, Nauka, M., 1959, 652 pp. (In Russ.)
[4] B. V. Boyarsky, Studies on elliptic equations in the plane and boundary problems of function theory, Doctoral of Physical and Mathematical Sciences thesis, M., 1960 (In Russ.)
[5] A. D. Juraev, Method of singular integral equations, Nauka, M., 1987, 415 pp. (In Russ.)
[6] K. Kh. Boymatov, G. Dzhangibekov, “On a singular integral operator”, Russian Mathematical Surveys, 43:3 (1988), 199–200 | DOI | MR
[7] G. Dzhangibekov, “On a class of two-dimensional singular integral operators and its applications to boundary value problems for elliptic systems of equations in the plane”, Doklady Mathematics, 47:3 (1993), 498–503 | MR | Zbl
[8] G. Jangibekov, G. Kh. Khujanazarova, “On the Noether property and the index for some two-dimensional singular integral operators in a connected domain”, Doklady Mathematics, 396:4 (2004), 449–454 (In Russ.) | MR | Zbl
[9] G. Dzhangibekov, D. M. Odinabekov, G. Kh. Khudzhanazarov, “The Noetherian Conditions and the Index of Some Class of Singular Integral Operators over a Bounded Simply Connected Domain”, Moscow University Mathematics Bulletin, 74:2 (2019), 49–54 | DOI | MR | Zbl
[10] R. V. Duduchava, “On multidimensional singular integral operators II: The case of compact manifolds”, Journal of Operator Theory, 11:1 (1984), 41–76 https://www.researchgate.net/publication/266063688_On_multidimensional_singular_integral_operators_I_The_half-space_case | MR | Zbl
[11] G. Jangibekov, G. Kh. Khujanazarova, “On the Dirichlet problem for elliptic systems of two equations of the fourth order on a plane”, Doklady Mathematics, 398:2 (2004), 151–155 (In Russ.) | MR
[12] G. Dzhangibekov, D. M. Odinabekov, “On the theory of two-dimensional singular integral operators with even characteristic over a bounded domains”, Contemporary problems of mathematics and mechanics, Proceedings of the conference dedicated to the 80th anniversary of academician V.A. Sadovnichy, MGU, M., 2019, 50–53 (In Russ.) | DOI