About the systems with full spark
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 25 (2019) no. 4, pp. 29-35 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Frames of a finite-dimensional Euclidean and unitary spaces composed of discrete Fourier transform matrices are considered. The relationship of phaseless reconstruction systems with the alternative completeness property is presented. In the complex case, alternative completeness is only a necessary condition for phaseless reconstruction. A system of vectors is constructed such that each of its subsystems with a volume equal to the dimension of space is linearly independent. These systems are called systems with full spark. In particular, such systems are optimal for phase retrieval.
Keywords: frame, synthesis operator, frame operator, alternative completeness, spark
Mots-clés : discrete Fourier transform, Vandermonde matrix.
@article{VSGU_2019_25_4_a3,
     author = {D. A. Rogach},
     title = {About the systems with full spark},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {29--35},
     year = {2019},
     volume = {25},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2019_25_4_a3/}
}
TY  - JOUR
AU  - D. A. Rogach
TI  - About the systems with full spark
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2019
SP  - 29
EP  - 35
VL  - 25
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSGU_2019_25_4_a3/
LA  - ru
ID  - VSGU_2019_25_4_a3
ER  - 
%0 Journal Article
%A D. A. Rogach
%T About the systems with full spark
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2019
%P 29-35
%V 25
%N 4
%U http://geodesic.mathdoc.fr/item/VSGU_2019_25_4_a3/
%G ru
%F VSGU_2019_25_4_a3
D. A. Rogach. About the systems with full spark. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 25 (2019) no. 4, pp. 29-35. http://geodesic.mathdoc.fr/item/VSGU_2019_25_4_a3/

[1] Novikov S.Ya., Frames of finite dimensional spaces and discrete phase problem, Samarskii gosuniversitet, Samara, 2016, 25–35 (in Russian)

[2] Bandeira A. S., Cahill J., Mixon D. G., Nelson A. A., “Saving phase: Injectivity and stability for phase retrieval”, Applied and Computational Harmonic Analysis (ACHA), 37 (2014), 106–125 | DOI | MR | Zbl

[3] Puschel M., Kovacevic J., “Real, tight frames with maximal robustness to erasures”, Data Compression Conference Proceedings, 2005, 63–72 | DOI

[4] Alexeev B., Cahill J., Mixon D. J., “Full spark frames”, Journal of Fourier Analysis and Application, 18:6 (2012), 1167–1194 | DOI | MR | Zbl

[5] Mixon D. J., Sparse Signal Processing with Frame Theory, PhD, Princeton University, 2012, arXiv: 1204.5958v1 [math.FA] | MR

[6] Novikov S.Ya., Likhobabenko M. A., Frames of finite dimensional spaces, Izdatel'stvo “Samarskii universitet”, Samara, 2013, 5–24

[7] Balan R., Casazza P., Edidin D., “On signal reconstruction without phase”, Appl. Comput. Harmon. Anal., 20 (2006), 345–356 | DOI | MR | Zbl

[8] Goyal V. K., Kovacevic J., “Quantized Frame Expansions with Erasures”, Appl. Comput. Harmon. Anal., 10 (2001), 203–233 | DOI | MR | Zbl

[9] Horn R. A., Johnson C. R., Matrix Analysis, translation from English, Mir, M., 1989, 43–44 (in Russian)

[10] Fickus M., Mixon D. G., Nelson A. A., Wang Ya., “Phase retrieval from very few measurements”, Linear Algebra and Its Applications, 449 (2014), 475–499 | DOI | MR | Zbl