Flow curvature applied to modelling of critical phenomena
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 25 (2019) no. 2, pp. 92-99 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Modeling of critical phenomena is a very important problem, which has direct applied application in many branches of science and technology. In this paper we regard a modification of the low curvature method applied to construction of invariant manifolds of autonomous fast-slow dynamic systems. We compared a new method with original ones via finding duck-trajectories and their multidimensional analogues — surfaces with variable stability. Comparison was used a three-dimensional autocatalytic reaction model and a model of the burning problem.
Keywords: differential equations, fast-slow systems, invariant manifolds, critical phenomena, duck-trajectories, various stability, flow curvature, burning problem.
Mots-clés : singular perturbations, autocatalytic reaction
@article{VSGU_2019_25_2_a5,
     author = {M. O. Balabaev},
     title = {Flow curvature applied to modelling of critical phenomena},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {92--99},
     year = {2019},
     volume = {25},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2019_25_2_a5/}
}
TY  - JOUR
AU  - M. O. Balabaev
TI  - Flow curvature applied to modelling of critical phenomena
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2019
SP  - 92
EP  - 99
VL  - 25
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSGU_2019_25_2_a5/
LA  - ru
ID  - VSGU_2019_25_2_a5
ER  - 
%0 Journal Article
%A M. O. Balabaev
%T Flow curvature applied to modelling of critical phenomena
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2019
%P 92-99
%V 25
%N 2
%U http://geodesic.mathdoc.fr/item/VSGU_2019_25_2_a5/
%G ru
%F VSGU_2019_25_2_a5
M. O. Balabaev. Flow curvature applied to modelling of critical phenomena. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 25 (2019) no. 2, pp. 92-99. http://geodesic.mathdoc.fr/item/VSGU_2019_25_2_a5/

[1] V. A. Sobolev, E. A. Shchepakina, Reduction of Models and Critical Phenomena in Macrokinetics, Fizmatlit, M., 2010, 320 pp. (in Russian)

[2] E. Benoit, J. L. Calot, M. Diener, “Chasse au Canard”, Collectanea Mathematica, 31–32 (1981), 37–119 (in French) https://www.academia.edu/19856616/Chasse_au_canard | MR

[3] M. Diener, Nessie et les Canards, Publication IRMA, Strasbourg, 1979 (in English) | Zbl

[4] G. N. Gorelov, V. A. Sobolev, “Duck-trajectories in a Thermal Explosion Problem”, Applied Mathematical Letters, 5 (1992), 3–6 (in English) | DOI | MR | Zbl

[5] V. A. Sobolev, E. A. Shchepakina, “Self-ignition of Dusty Media”, Combustion: Explosion and Shock Waves, 29 (1993), 378–381 (in English) | DOI

[6] V. Goldshtein, A. Zinoviev, V. Sobolev, E. Shchepakina, “Criterion for Thermal Explosion with Reactant Consumption in a Dusty Gas”, Proceedings of The Royal Society A Mathematical Physical and Engineering Sciences, 452 (1996), 2103–2119 (in English) | DOI | Zbl

[7] V. A. Sobolev, E. A. Shchepakina, “Duck Trajectories in a Problem of Combustion Theory”, Differential Equations, 32 (1996), 1177–1186 (in English) | MR | Zbl

[8] C. Gavin, A. Pokrovskii, M. Prentice, V. Sobolev, “Dynamics of a Lotka-Volterra Type Model with Applications to Marine Phage Population Dynamics”, Journal of Physics: Conference Series, 55 (2006), 80–93 (in English) | DOI

[9] E. Shchepakina, O. Korotkova, “Condition for Canard Explosion in a Semiconductor Optical Amplier”, Journal of the Optical Society of America B: Optical Physics, 28 (2011), 1988–1993 (in English) | DOI | MR

[10] E. Shchepakina, O. Korotkova, “Canard Explosion in Chemical and Optical Systems”, Discrete and Continuous Dynamical Systems (series B), 18 (2013), 495–512 (in English) | DOI | MR | Zbl

[11] E. Shchepakina, V. Sobolev, “Integral Manifolds, Canards, Black Swans”, Nonlinear Analysis. Ser. A: Theory Methods, 44 (2001), 897–908 (in English) | DOI | MR | Zbl

[12] E. A. Shchepakina, V. A. Sobolev, M. P. Mortell, Introduction to system order reduction methods with applications, Lecture notes in math., 2114, 2014, 201 pp. (in English) https://pl.b-ok.cc/book/2466101/06d4ed | DOI | MR | Zbl

[13] V. A. Sobolev, E. A. Shchepakina, Standard Chase on Black Swans and Canards, Preprint No 426, WIAS, Berlin, 1998 https://pdfs.semanticscholar.org/ec52/384507ac225541417f856ce8a02de7680a66.pdf?_ga=2.63816171.510207900.1570716853-18694247.1570716853

[14] E. Shchepakina, “Canards and Black Swans in Model of a 3-D Autocatalator”, Journal of Physics: Conference Series, 22 (2005), 194–207 (in English) | DOI

[15] M. Balabaev, “Black swan and curvature in an autocatalator model”, Procedia Engineering, 201 (2017), 561–566 (in English) | DOI

[16] M. Balabaev, “Flow curvature method applied to the burning problem”, Proceedings of the IV international conference and youth school “Information technologies and nanotechnologies”, ITNT-2018, Novaya tekhnika, Samara, 2018, 1996–2000 (in Russian)

[17] N. N. Bogolyubov, Yu. A. Mitropolsky, Asymptotic methods in the theory of nonlinear oscillations, Nauka, M., 1974, 504 pp. (in Russian)

[18] J. G. Darboux, “Mémoire sur les équations différentielles dlgébriques du premier ordre et du premier degré”, Bull. Sci. Math. sér. 2, 2 (1878), 60–96 ; 123–143; (in French) http://www.numdam.org/article/BSMA_1878_2_2_1_151_1.pdf | Zbl

[19] M. Demazure, Catastrophes et bifurcations, Ellipses, Paris, 1989 (in French) http://bookre.org/reader?file=1329312 | Zbl

[20] J. M. Ginoux, Differential geometry applied to dynamical systems, v. 3, World Scientific, Singapore, 2009 (in English) http://bookre.org/reader?file=700337 | Zbl

[21] B. Rossetto, “Singular Approximation of Chaotic Slow-fast Dynamical Systems”, Lecture Notes in Physics, 278 (1986), 12–14 (in English) | DOI | MR