Flow curvature applied to modelling of critical phenomena
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 25 (2019) no. 2, pp. 92-99

Voir la notice de l'article provenant de la source Math-Net.Ru

Modeling of critical phenomena is a very important problem, which has direct applied application in many branches of science and technology. In this paper we regard a modification of the low curvature method applied to construction of invariant manifolds of autonomous fast-slow dynamic systems. We compared a new method with original ones via finding duck-trajectories and their multidimensional analogues — surfaces with variable stability. Comparison was used a three-dimensional autocatalytic reaction model and a model of the burning problem.
Keywords: differential equations, fast-slow systems, invariant manifolds, critical phenomena, duck-trajectories, various stability, flow curvature, burning problem.
Mots-clés : singular perturbations, autocatalytic reaction
@article{VSGU_2019_25_2_a5,
     author = {M. O. Balabaev},
     title = {Flow curvature applied to modelling of critical phenomena},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {92--99},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2019_25_2_a5/}
}
TY  - JOUR
AU  - M. O. Balabaev
TI  - Flow curvature applied to modelling of critical phenomena
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2019
SP  - 92
EP  - 99
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGU_2019_25_2_a5/
LA  - ru
ID  - VSGU_2019_25_2_a5
ER  - 
%0 Journal Article
%A M. O. Balabaev
%T Flow curvature applied to modelling of critical phenomena
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2019
%P 92-99
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGU_2019_25_2_a5/
%G ru
%F VSGU_2019_25_2_a5
M. O. Balabaev. Flow curvature applied to modelling of critical phenomena. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 25 (2019) no. 2, pp. 92-99. http://geodesic.mathdoc.fr/item/VSGU_2019_25_2_a5/