Flow curvature applied to modelling of critical phenomena
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 25 (2019) no. 2, pp. 92-99
Voir la notice de l'article provenant de la source Math-Net.Ru
Modeling of critical phenomena is a very important problem, which has direct applied application in many branches of science and technology. In this paper we regard a modification of the low curvature method applied to construction of invariant manifolds of autonomous fast-slow dynamic systems. We compared a new method with original ones via finding duck-trajectories and their multidimensional analogues — surfaces with variable stability. Comparison was used a three-dimensional autocatalytic reaction model and a model of the burning problem.
Keywords:
differential equations, fast-slow systems, invariant manifolds, critical phenomena, duck-trajectories, various stability, flow curvature, burning problem.
Mots-clés : singular perturbations, autocatalytic reaction
Mots-clés : singular perturbations, autocatalytic reaction
@article{VSGU_2019_25_2_a5,
author = {M. O. Balabaev},
title = {Flow curvature applied to modelling of critical phenomena},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {92--99},
publisher = {mathdoc},
volume = {25},
number = {2},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2019_25_2_a5/}
}
TY - JOUR AU - M. O. Balabaev TI - Flow curvature applied to modelling of critical phenomena JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2019 SP - 92 EP - 99 VL - 25 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGU_2019_25_2_a5/ LA - ru ID - VSGU_2019_25_2_a5 ER -
M. O. Balabaev. Flow curvature applied to modelling of critical phenomena. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 25 (2019) no. 2, pp. 92-99. http://geodesic.mathdoc.fr/item/VSGU_2019_25_2_a5/