Sets of modular forms which define groups
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2009), pp. 21-34

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article we consider the problem of finding sets of modular forms which explicitly define groups. The correspondence between modular forms and elements of groups is based on the consideration of characteristic polynomials of faithful representations. We solve this problem for the groups of order 24.
Keywords: group representations, modular forms, genetic code, Dedekind eta-function.
@article{VSGU_2009_6_a2,
     author = {G. V. Voskresenskaya},
     title = {Sets of modular forms which define  groups},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {21--34},
     publisher = {mathdoc},
     number = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2009_6_a2/}
}
TY  - JOUR
AU  - G. V. Voskresenskaya
TI  - Sets of modular forms which define  groups
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2009
SP  - 21
EP  - 34
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGU_2009_6_a2/
LA  - ru
ID  - VSGU_2009_6_a2
ER  - 
%0 Journal Article
%A G. V. Voskresenskaya
%T Sets of modular forms which define  groups
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2009
%P 21-34
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGU_2009_6_a2/
%G ru
%F VSGU_2009_6_a2
G. V. Voskresenskaya. Sets of modular forms which define  groups. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2009), pp. 21-34. http://geodesic.mathdoc.fr/item/VSGU_2009_6_a2/