Sets of modular forms which define groups
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2009), pp. 21-34 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the article we consider the problem of finding sets of modular forms which explicitly define groups. The correspondence between modular forms and elements of groups is based on the consideration of characteristic polynomials of faithful representations. We solve this problem for the groups of order 24.
Keywords: group representations, modular forms, genetic code, Dedekind eta-function.
@article{VSGU_2009_6_a2,
     author = {G. V. Voskresenskaya},
     title = {Sets of modular forms which define groups},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {21--34},
     year = {2009},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2009_6_a2/}
}
TY  - JOUR
AU  - G. V. Voskresenskaya
TI  - Sets of modular forms which define groups
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2009
SP  - 21
EP  - 34
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VSGU_2009_6_a2/
LA  - ru
ID  - VSGU_2009_6_a2
ER  - 
%0 Journal Article
%A G. V. Voskresenskaya
%T Sets of modular forms which define groups
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2009
%P 21-34
%N 6
%U http://geodesic.mathdoc.fr/item/VSGU_2009_6_a2/
%G ru
%F VSGU_2009_6_a2
G. V. Voskresenskaya. Sets of modular forms which define groups. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2009), pp. 21-34. http://geodesic.mathdoc.fr/item/VSGU_2009_6_a2/

[1] Belonogov V. A., Predstavleniya i kharaktery v teorii konechnykh grupp, Izd-vo UrO AN SSSR, Sverdlovsk, 1990 | MR

[2] Voskresenskaya G. V., “Metatsiklicheskie gruppy i modulyarnye formy”, Matem. zametki, 67:2 (2000), 163–173 | DOI | MR | Zbl

[3] Voskresenskaya G. V., “Multiplikativnye proizvedeniya eta-funktsii Dedekinda i predstavleniya grupp”, Matem. zametki, 73:4 (2003), 282–295 | DOI | MR

[4] Voskresenskaya G. V., “O probleme klassifikatsii konechnykh grupp, assotsiirovannykh s multiplikativnymi eta-proizvedeniyami”, Fund. i priklad. matematika, 10:4 (2004), 43–64 | MR | Zbl

[5] Gorenstein D., Konechnye prostye gruppy. Vvedenie v ikh klassifikatsiyu, Mir, M., 1985 | MR | Zbl

[6] Kokseter G. S. M., Mozer U. O. Dzh. M., Porozhdayuschie elementy i opredelyayuschie sootnosheniya diskretnykh grupp, Nauka, M., 1980 | MR

[7] Kertis Ch., Rainer I., Teoriya predstavlenii konechnykh grupp i assotsiativnykh algebr, Nauka, M., 1969 | MR

[8] Dummit D., Kisilevsky H., MacKay J., “Multiplicative products of $\eta$-functions”, Contemp. Math., 45 (1985), 89–98 | DOI | MR | Zbl

[9] Mason G., “Frame shapes and rational characters of finite groups”, J. Algebra, 89 (1984), 236–246 | DOI | MR

[10] Mason G., “$M_{24}$ and certain automorphic forms”, Contemp. Math., 45 (1985), 223–244 | DOI | MR | Zbl

[11] Mason G., “Finite groups and Hecke operators”, Math. Ann., 283 (1989), 381–409 | DOI | MR | Zbl

[12] Newman M., “Construction and application of a certain class of modular forms”, Proc. L.M.S., 7 (1956), 334–350 | MR

[13] Newman M., “Construction and application of a certain class of modular forms, II”, Proc. L.M.S., 9 (1959), 373–387 | DOI | MR | Zbl

[14] Ono K., The web of modularity: arithmetics of the coefficients of modular forms and q-series, Prinston, 2004, 216 pp. | MR

[15] Voskresenskaya G. V., “One special class of modular forms and group representations”, JTNB, 11 (1999), 247–262 | MR | Zbl

[16] Voskresenskaya G. V., “Multiplicative Dedekind $\eta$-functions and representations of finite groups”, JTNB, 17 (2005), 359–380 | MR | Zbl

[17] Voskresenskaya G. V., “O teorii sootvetstviya mezhdu konechnymi gruppami i modulyarnymi formami”, Vestnik SamGU, 2008, no. 5(67), 71–82