Sets of modular forms which define  groups
    
    
  
  
  
      
      
      
        
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2009), pp. 21-34
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In the article we consider the problem of finding sets of modular forms which explicitly define groups. The correspondence between modular forms and elements of groups is based on the consideration of characteristic polynomials of faithful representations. We solve this problem for the groups of order 24.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
group representations, modular forms, genetic code, Dedekind eta-function.
                    
                  
                
                
                @article{VSGU_2009_6_a2,
     author = {G. V. Voskresenskaya},
     title = {Sets of modular forms which define  groups},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {21--34},
     publisher = {mathdoc},
     number = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2009_6_a2/}
}
                      
                      
                    G. V. Voskresenskaya. Sets of modular forms which define groups. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2009), pp. 21-34. http://geodesic.mathdoc.fr/item/VSGU_2009_6_a2/
