The discrete time ``predator-prey'' model
    
    
  
  
  
      
      
      
        
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2009), pp. 139-148
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Method of impulse invariance, which is often used to design digital filters, was used to create the discrete time Volterra model with lagging. The predator-prey system was studied as a discrete self-oscillating system. The results of simulation modeling of a system with random lagging are listed.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Mots-clés : 
Volterra model
Keywords: lagging links, self-oscillations, discrete time.
                    
                  
                
                
                Keywords: lagging links, self-oscillations, discrete time.
@article{VSGU_2009_6_a13,
     author = {V. V. Zaytcev and A. V. Karlov-junior and S. S. Telegin},
     title = {The discrete time ``predator-prey'' model},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {139--148},
     publisher = {mathdoc},
     number = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2009_6_a13/}
}
                      
                      
                    TY - JOUR AU - V. V. Zaytcev AU - A. V. Karlov-junior AU - S. S. Telegin TI - The discrete time ``predator-prey'' model JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2009 SP - 139 EP - 148 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGU_2009_6_a13/ LA - ru ID - VSGU_2009_6_a13 ER -
V. V. Zaytcev; A. V. Karlov-junior; S. S. Telegin. The discrete time ``predator-prey'' model. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2009), pp. 139-148. http://geodesic.mathdoc.fr/item/VSGU_2009_6_a13/
