The discrete time “predator-prey” model
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2009), pp. 139-148 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Method of impulse invariance, which is often used to design digital filters, was used to create the discrete time Volterra model with lagging. The predator-prey system was studied as a discrete self-oscillating system. The results of simulation modeling of a system with random lagging are listed.
Mots-clés : Volterra model
Keywords: lagging links, self-oscillations, discrete time.
@article{VSGU_2009_6_a13,
     author = {V. V. Zaytcev and A. V. Karlov-junior and S. S. Telegin},
     title = {The discrete time {\textquotedblleft}predator-prey{\textquotedblright} model},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {139--148},
     year = {2009},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2009_6_a13/}
}
TY  - JOUR
AU  - V. V. Zaytcev
AU  - A. V. Karlov-junior
AU  - S. S. Telegin
TI  - The discrete time “predator-prey” model
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2009
SP  - 139
EP  - 148
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VSGU_2009_6_a13/
LA  - ru
ID  - VSGU_2009_6_a13
ER  - 
%0 Journal Article
%A V. V. Zaytcev
%A A. V. Karlov-junior
%A S. S. Telegin
%T The discrete time “predator-prey” model
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2009
%P 139-148
%N 6
%U http://geodesic.mathdoc.fr/item/VSGU_2009_6_a13/
%G ru
%F VSGU_2009_6_a13
V. V. Zaytcev; A. V. Karlov-junior; S. S. Telegin. The discrete time “predator-prey” model. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2009), pp. 139-148. http://geodesic.mathdoc.fr/item/VSGU_2009_6_a13/

[1] Volterra V., Matematicheskaya teoriya borby za suschestvovanie, Nauka, M., 1976, 288 pp. | MR

[2] Bazykin A. D., Nelineinaya dinamika vzaimodeistvuyuschikh populyatsii, Institut kompyuternykh issledovanii, M., 2003, 368 pp.

[3] Mari Dzh., Nelineinye differentsialnye uravneniya v biologii. Lektsii o modelyakh, per. s angl., Mir, M., 1983, 400 pp.

[4] Rubanik V. P., Kolebaniya kvazilineinykh sistem s zapazdyvaniem, Nauka, M., 1969, 288 pp. | MR | Zbl

[5] Kolesov Yu. S., “Matematicheskie modeli ekologii”, Issledovaniya po ustoichivosti i teorii kolebanii, Izd-vo YarGU, Yaroslavl, 1979, 3–40 | MR

[6] Babskii V. G., Myshkis A. D., “Matematicheskie modeli v biologii, svyazannye s uchetom posledeistviya”, Nelineinye differentsialnye uravneniya v biologii, Mir, M., 1983, 400 pp.

[7] Muzychuk O. V., “Veroyatnostnye kharakteristiki sistemy “khischnik-zhertva” so sluchaino izmenyayuschimisya parametrami”, Izv. vuzov. Prikladnaya nelineinaya dinamika, 5:2 (1997), 80–86

[8] Gardiner K. V., Stokhasticheskie metody v estestvennykh naukakh, Mir, M., 1986 | MR | Zbl

[9] Elsgolts L. E., Norkin S. B., Vvedenie v teoriyu differentsialnykh uravnenii s otklonyayuschimsya argumentom, Nauka, M., 1971, 296 pp. | MR

[10] Zaitsev V. V., Davydenko S. V., Zaitsev O. V., “Dinamika avtokolebanii diskretnogo ostsillyatora Van der Polya”, Fizika volnovykh protsessov i radiotekhnicheskie sistemy, 3:2 (2000), 64–67

[11] V. V. Zaitsev i dr., “DV-ostsillyatory, porozhdaemye tomsonovskimi avtokolebatelnymi sistemami”, Fizika volnovykh protsessov i radiotekhnicheskie sistemy, 11:4 (2008), 98–103

[12] Oppengeim A., Shafer R., Tsifrovaya obrabotka signalov, 2-e izd., Tekhnosfera, M., 2006, 856 pp.

[13] Zaitsev V. V., Telegin S. S., “Integralnaya model avtokolebanii v sisteme “khischnik-zhertva””, Fizika volnovykh protsessov i radiotekhnicheskie sistemy, 12:2 (2009)

[14] Hall C. A. S., “An assessment of several of the historically most influential theoretical models used in ecology end of the data provided in their support”, Ecological modeling, 43 (1988), 5–31 | DOI

[15] Romanovskii M. Yu., Romanovskii Yu. M., Vvedenie v ekonofiziku. Statisticheskie i dinamicheskie modeli, Institut kompyuternykh issledovanii, M.–Izhevsk, 2007, 280 pp.