Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2024_28_4_a8, author = {I. V. Kudinov and K. V. Trubitsyn and A. V. Eremin and V. D. Dolgikh}, title = {Mathematical modeling of gas oscillations in a methane pyrolysis reactor}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {773--789}, publisher = {mathdoc}, volume = {28}, number = {4}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2024_28_4_a8/} }
TY - JOUR AU - I. V. Kudinov AU - K. V. Trubitsyn AU - A. V. Eremin AU - V. D. Dolgikh TI - Mathematical modeling of gas oscillations in a methane pyrolysis reactor JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2024 SP - 773 EP - 789 VL - 28 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2024_28_4_a8/ LA - ru ID - VSGTU_2024_28_4_a8 ER -
%0 Journal Article %A I. V. Kudinov %A K. V. Trubitsyn %A A. V. Eremin %A V. D. Dolgikh %T Mathematical modeling of gas oscillations in a methane pyrolysis reactor %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2024 %P 773-789 %V 28 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2024_28_4_a8/ %G ru %F VSGTU_2024_28_4_a8
I. V. Kudinov; K. V. Trubitsyn; A. V. Eremin; V. D. Dolgikh. Mathematical modeling of gas oscillations in a methane pyrolysis reactor. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 28 (2024) no. 4, pp. 773-789. http://geodesic.mathdoc.fr/item/VSGTU_2024_28_4_a8/
[1] Baranov N. N., Netraditsionnye istochniki i metody preobrazovaniia energii [Unconventional Sources and Methods of Energy Conversion], Moscow University of Economics, Moscow, 2012, 384 pp. (In Russian)
[2] Fortov V. E., Popel O. S., Energetika v sovremennom mire [Energetics in the Modern World], Intellekt, Moscow, 2011, 168 pp. (In Russian)
[3] Dagle R. A, Dagle V. L., Bearden M. D., et al., An overview of natural gas conversion technologies for co-production of hydrogen and value added solid carbon products, OSTI Technical Report, U.S. Department of Energy, Washington, 2017 | DOI
[4] Kudinov I. V., Pimenov A. A., Mikheeva G. V., “Modeling of the thermal decomposition of methane and the formation of solid carbon particles”, Petroleum Chem., 60:11 (2020), 1239–1243 | DOI | DOI
[5] Kudinov I. V., Pimenov A. A., Kryukov Y. A., Mikheeva G. V., “A theoretical and experimental study on hydrodynamics, heat exchange and diffusion during methane pyrolysis in a layer of molten tin”, Int. J. Hydrogen Energy, 46:17 (2021), 10183–10190 | DOI
[6] Kudinov I. V., Vellikanova Yu. V., Nenashev M. V., et al., “Methane pyrolysis in molten media for hydrogen production: A review of current advances”, Petr. Chem., 63:9 (2023), 1017–1026 | DOI | DOI
[7] Machhammer O., Bode A., Hormuth W., “Financial and ecological evaluation of hydrogen production processes on large scale”, Chem. Eng. Technol., 39:6 (2016), 1185–1193 | DOI
[8] Leal Perez B., Medrano Jiménez J. A., Bhardwaj R., et al., “Methane pyrolysis in a molten gallium bubble column reactor for sustainable hydrogen production: Proof of concept techno-economic assessment”, Int. J. Hydrogen Energy, 46:7 (2021), 4917–4935 | DOI
[9] Zhao Q., Wang Y., Wang Y.N., et al., “Steam reforming of $\text{CH}_4$ at low temperature on $\text{Ni}/\text{ZrO}_2$ catalyst: Effect of $\text{H}_2\text{O}/\text{CH}_4$ ratio on carbon $\text{Q}_5$ deposition”, Int. J. Hydrogen Energy, 45:28 (2020), 14281–14292 | DOI
[10] Steinberg M., “The Carnol process for $\text{CO}_2$ mitigation from power plants and the transportation sector”, Energy Conv. Manag., 37:6–8 (1996), 843–848 | DOI
[11] Steinberg M., “Fossil fuel decarbonization technology for mitigating global warming”, Int. J. Hydrogen Energy, 24:8 (1999), 771–777 | DOI
[12] Babakov I. M., Teoriia kolebanii [Theory of Oscillations], Drofa, Moscow, 2004, 592 pp. (In Russian)
[13] Kabisov K. S., Kamalov T. F., Lurie V. A., Kolebaniia i volnovye protsessy [Oscillations and Wave Processes], KomKniga, Moscow, 2010, 360 pp. (In Russian)
[14] Kudinov I. V., “Development of mathematical models and research strongly nonequilibrium developments taking into account space-time nonlocality”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 22:1 (2018), 116–152 (In Russian) | DOI | Zbl
[15] Sobolev S. L., “Local non-equilibrium transport models”, Phys. Usp., 40:10 (1997), 1043–1053 | DOI | DOI
[16] Sobolev S. L., “Transport processes and traveling waves in systems with local nonequilibrium”, Phys. Usp., 34:3 (1991), 217–229 | DOI | DOI
[17] Loitsiansky L. G., Mekhanika zhidkosti i gaza [Mechanics of Fluid and Gas], Drofa, Moscow, 2003, 840 pp. (In Russian)
[18] Filin A. P., Prikladnaia mekhanika tverdogo deformiruemogo tela [Applied Mechanics of Deformable Solid Body], v. 1, Nauka, Moscow, 1976, 353 pp. (In Russian)
[19] Kudinov I. V., Eremin A. V., Kudinov V. A., et al., “Mathematical model of damped elastic rod oscillations with dual-phase-lag”, Int. J. Solids Struct., 200–201 (2020), 231–241 | DOI
[20] Parshakov A. N., Intellekt, Moscow, 2014, 144 pp. (In Russian)